30 resultados para Classification of Banach spaces
em CentAUR: Central Archive University of Reading - UK
Resumo:
Spin factors and generalizations are used to revisit positive generation of B(E, F), where E and F are ordered Banach spaces. Interior points of B(E, F)+ are discussed and in many cases it is seen that positive generation of B(E, F) is controlled by spin structure in F when F is a JBW-algebra.
Resumo:
Site-specific management requires accurate knowledge of the spatial variation in a range of soil properties within fields. This involves considerable sampling effort, which is costly. Ancillary data, such as crop yield, elevation and apparent electrical conductivity (ECa) of the soil, can provide insight into the spatial variation of some soil properties. A multivariate classification with spatial constraint imposed by the variogram was used to classify data from two arable crop fields. The yield data comprised 5 years of crop yield, and the ancillary data 3 years of yield data, elevation and ECa. Information on soil chemical and physical properties was provided by intensive surveys of the soil. Multivariate variograms computed from these data were used to constrain sites spatially within classes to increase their contiguity. The constrained classifications resulted in coherent classes, and those based on the ancillary data were similar to those from the soil properties. The ancillary data seemed to identify areas in the field where the soil is reasonably homogeneous. The results of targeted sampling showed that these classes could be used as a basis for management and to guide future sampling of the soil.
Resumo:
Bloom-forming and toxin-producing cyanobacteria remain a persistent nuisance across the world. Modelling of cyanobacteria in freshwaters is an important tool for understanding their population dynamics and predicting bloom occurrence in lakes and rivers. In this paper existing key models of cyanobacteria are reviewed, evaluated and classified. Two major groups emerge: deterministic mathematical and artificial neural network models. Mathematical models can be further subcategorized into those models concerned with impounded water bodies and those concerned with rivers. Most existing models focus on a single aspect such as the growth of transport mechanisms, but there are a few models which couple both.
Resumo:
In this work a new method for clustering and building a topographic representation of a bacteria taxonomy is presented. The method is based on the analysis of stable parts of the genome, the so-called “housekeeping genes”. The proposed method generates topographic maps of the bacteria taxonomy, where relations among different type strains can be visually inspected and verified. Two well known DNA alignement algorithms are applied to the genomic sequences. Topographic maps are optimized to represent the similarity among the sequences according to their evolutionary distances. The experimental analysis is carried out on 147 type strains of the Gammaprotebacteria class by means of the 16S rRNA housekeeping gene. Complete sequences of the gene have been retrieved from the NCBI public database. In the experimental tests the maps show clusters of homologous type strains and present some singular cases potentially due to incorrect classification or erroneous annotations in the database.
Resumo:
In this work the G(A)(0) distribution is assumed as the universal model for amplitude Synthetic Aperture (SAR) imagery data under the Multiplicative Model. The observed data, therefore, is assumed to obey a G(A)(0) (alpha; gamma, n) law, where the parameter n is related to the speckle noise, and (alpha, gamma) are related to the ground truth, giving information about the background. Therefore, maps generated by the estimation of (alpha, gamma) in each coordinate can be used as the input for classification methods. Maximum likelihood estimators are derived and used to form estimated parameter maps. This estimation can be hampered by the presence of corner reflectors, man-made objects used to calibrate SAR images that produce large return values. In order to alleviate this contamination, robust (M) estimators are also derived for the universal model. Gaussian Maximum Likelihood classification is used to obtain maps using hard-to-deal-with simulated data, and the superiority of robust estimation is quantitatively assessed.
Classification of lactose and mandelic acid THz spectra using subspace and wavelet-packet algorithms
Resumo:
This work compares classification results of lactose, mandelic acid and dl-mandelic acid, obtained on the basis of their respective THz transients. The performance of three different pre-processing algorithms applied to the time-domain signatures obtained using a THz-transient spectrometer are contrasted by evaluating the classifier performance. A range of amplitudes of zero-mean white Gaussian noise are used to artificially degrade the signal-to-noise ratio of the time-domain signatures to generate the data sets that are presented to the classifier for both learning and validation purposes. This gradual degradation of interferograms by increasing the noise level is equivalent to performing measurements assuming a reduced integration time. Three signal processing algorithms were adopted for the evaluation of the complex insertion loss function of the samples under study; a) standard evaluation by ratioing the sample with the background spectra, b) a subspace identification algorithm and c) a novel wavelet-packet identification procedure. Within class and between class dispersion metrics are adopted for the three data sets. A discrimination metric evaluates how well the three classes can be distinguished within the frequency range 0. 1 - 1.0 THz using the above algorithms.
Resumo:
In rapid scan Fourier transform spectrometry, we show that the noise in the wavelet coefficients resulting from the filter bank decomposition of the complex insertion loss function is linearly related to the noise power in the sample interferogram by a noise amplification factor. By maximizing an objective function composed of the power of the wavelet coefficients divided by the noise amplification factor, optimal feature extraction in the wavelet domain is performed. The performance of a classifier based on the output of a filter bank is shown to be considerably better than that of an Euclidean distance classifier in the original spectral domain. An optimization procedure results in a further improvement of the wavelet classifier. The procedure is suitable for enhancing the contrast or classifying spectra acquired by either continuous wave or THz transient spectrometers as well as for increasing the dynamic range of THz imaging systems. (C) 2003 Optical Society of America.
Resumo:
Objective: This paper presents a detailed study of fractal-based methods for texture characterization of mammographic mass lesions and architectural distortion. The purpose of this study is to explore the use of fractal and lacunarity analysis for the characterization and classification of both tumor lesions and normal breast parenchyma in mammography. Materials and methods: We conducted comparative evaluations of five popular fractal dimension estimation methods for the characterization of the texture of mass lesions and architectural distortion. We applied the concept of lacunarity to the description of the spatial distribution of the pixel intensities in mammographic images. These methods were tested with a set of 57 breast masses and 60 normal breast parenchyma (dataset1), and with another set of 19 architectural distortions and 41 normal breast parenchyma (dataset2). Support vector machines (SVM) were used as a pattern classification method for tumor classification. Results: Experimental results showed that the fractal dimension of region of interest (ROIs) depicting mass lesions and architectural distortion was statistically significantly lower than that of normal breast parenchyma for all five methods. Receiver operating characteristic (ROC) analysis showed that fractional Brownian motion (FBM) method generated the highest area under ROC curve (A z = 0.839 for dataset1, 0.828 for dataset2, respectively) among five methods for both datasets. Lacunarity analysis showed that the ROIs depicting mass lesions and architectural distortion had higher lacunarities than those of ROIs depicting normal breast parenchyma. The combination of FBM fractal dimension and lacunarity yielded the highest A z value (0.903 and 0.875, respectively) than those based on single feature alone for both given datasets. The application of the SVM improved the performance of the fractal-based features in differentiating tumor lesions from normal breast parenchyma by generating higher A z value. Conclusion: FBM texture model is the most appropriate model for characterizing mammographic images due to self-affinity assumption of the method being a better approximation. Lacunarity is an effective counterpart measure of the fractal dimension in texture feature extraction in mammographic images. The classification results obtained in this work suggest that the SVM is an effective method with great potential for classification in mammographic image analysis.