6 resultados para Clarinet with orchestra, arranged
em CentAUR: Central Archive University of Reading - UK
The genus Borassus (Arecaceae) in West Africa, with a description of a new species from Burkina Faso
Resumo:
Borassus akeassii Bayton, Ouedraogo & Guinko sp. nov. (Arecaceae) is described as a new species from western Burkina Faso in West Africa. It has been confused with the widely distributed African species B. aethiopum and more recently with the Asian B. flabellifer. However, it is distinguished by its glaucous, green leaves with weakly armed petioles and a characteristic pattern of lamina venation. The fruits have a pointed apex and are greenish when ripe, and the flowers of the pistillate inflorescence are arranged in three spirals. The pollen has a reticulate tectum and distinctive ornamentation. The distribution of B. akeassii is discussed and the status of the varieties of Borassus aethiopum (var. bagamojensis and var. senegalensis) is examined. (c) 2006 The Linnean Society of London.
Resumo:
A new tetranuclear complex, [Cu4L4](ClO4)4·2H2O (1), has been synthesized from the self-assembly of copper(II) perchlorate and the tridentate Schiff base ligand (2E,3E)-3-(2-aminopropylimino) butan-2-one oxime (HL). Single-crystal X-ray diffraction studies reveal that complex 1 consists of a Cu4(NO)4 core where the four copper(II) centers having square pyramidal environment are arranged in a distorted tetrahedral geometry. They are linked together by a rare bridging mode (μ3-η1,η2,η1) of oximato ligands. Analysis of magnetic susceptibility data indicates moderate antiferromagnetic (J1 = −48 cm−1, J2 = −40 cm−1 and J3 = −52 cm−1) exchange interaction through σ-superexchange pathways (in-plane bridging) of the oxime group. Theoretical calculations based on DFT technique have been used to obtain the energy states of different spin configurations and estimate the coupling constants and to understand the exact magnetic exchange pathways.
Resumo:
The o-palladated, chloro-bridged dimers [Pd{2-phenylpyridine(-H)}-μ-Cl]2 and [Pd{N,N-dimethylbenzylamine(-H)}-μ-Cl]2 react with cyanuric acid in the presence of base to afford closed, chiral cage-molecules in which twelve organo-Pd(II) centers, located in pairs at the vertices of an octahedron, are linked by four tetrahedrally-arranged cyanurato(3-) ligands. Incomplete (Pd10) cages, having structures derived from the corresponding Pd12 cages by replacing one pair of organopalladium centers with two protons, have also been isolated. Reaction of [Pd{2-phenylpyridine(-H)}-μ-Cl]2 with trithiocyanuric acid gives an entirely different and more open type of cage-complex, comprising only nine organopalladium centers and three thiocyanurato(3-) ligands: cage-closure in this latter system appears to be inhibited by steric crowding of the thiocarbonyl groups.
Resumo:
In this paper, the concept of available potential energy (APE) density is extended to a multicomponent Boussinesq fluid with a nonlinear equation of state. As shown by previous studies, the APE density is naturally interpreted as the work against buoyancy forces that a parcel needs to perform to move from a notional reference position at which its buoyancy vanishes to its actual position; because buoyancy can be defined relative to an arbitrary reference state, so can APE density. The concept of APE density is therefore best viewed as defining a class of locally defined energy quantities, each tied to a different reference state, rather than as a single energy variable. An important result, for which a new proof is given, is that the volume integrated APE density always exceeds Lorenz’s globally defined APE, except when the reference state coincides with Lorenz’s adiabatically re-arranged reference state of minimum potential energy. A parcel reference position is systematically defined as a level of neutral buoyancy (LNB): depending on the nature of the fluid and on how the reference state is defined, a parcel may have one, none, or multiple LNB within the fluid. Multiple LNB are only possible for a multicomponent fluid whose density depends on pressure. When no LNB exists within the fluid, a parcel reference position is assigned at the minimum or maximum geopotential height. The class of APE densities thus defined admits local and global balance equations, which all exhibit a conversion with kinetic energy, a production term by boundary buoyancy fluxes, and a dissipation term by internal diffusive effects. Different reference states alter the partition between APE production and dissipation, but neither affect the net conversion between kinetic energy and APE, nor the difference between APE production and dissipation. We argue that the possibility of constructing APE-like budgets based on reference states other than Lorenz’s reference state is more important than has been previously assumed, and we illustrate the feasibility of doing so in the context of an idealised and realistic oceanic example, using as reference states one with constant density and another one defined as the horizontal mean density field; in the latter case, the resulting APE density is found to be a reasonable approximation of the APE density constructed from Lorenz’s reference state, while being computationally cheaper.
Resumo:
An introduction to the history of stencil typefaces, followed by a survey of recent stencil typefaces (1990s to the present day) arranged in eight thematic sections.
Resumo:
The study of the mechanical energy budget of the oceans using Lorenz available potential energy (APE) theory is based on knowledge of the adiabatically re-arranged Lorenz reference state of minimum potential energy. The compressible and nonlinear character of the equation of state for seawater has been thought to cause the reference state to be ill-defined, casting doubt on the usefulness of APE theory for investigating ocean energetics under realistic conditions. Using a method based on the volume frequency distribution of parcels as a function of temperature and salinity in the context of the seawater Boussinesq approximation, which we illustrate using climatological data, we show that compressibility effects are in fact minor. The reference state can be regarded as a well defined one-dimensional function of depth, which forms a surface in temperature, salinity and density space between the surface and the bottom of the ocean. For a very small proportion of water masses, this surface can be multivalued and water parcels can have up to two statically stable levels in the reference density profile, of which the shallowest is energetically more accessible. Classifying parcels from the surface to the bottom gives a different reference density profile than classifying in the opposite direction. However, this difference is negligible. We show that the reference state obtained by standard sorting methods is equivalent, though computationally more expensive, to the volume frequency distribution approach. The approach we present can be applied systematically and in a computationally efficient manner to investigate the APE budget of the ocean circulation using models or climatological data.