55 resultados para Clarendon Hills
em CentAUR: Central Archive University of Reading - UK
Resumo:
Intensification of crop production in the mid-hills of Nepal has led to concerns that nitrogen loss by leaching may increase. This study estimated the amount of N leached during two years from rainfed terraces (bari-land) at three locations in Nepal. Maize or upland rice grown in the monsoon season was given either no nutrient inputs or inputs via either nitrogen fertilizer or farmyard manure. Nitrate concentration in soil solution was measured regularly with porous ceramic cup samplers and drainage estimated from a simple soil water balance. Estimated losses of nitrogen by leaching ranged from 0 to 63.5 kg N ha(-1) depending on location and the form of nitrogen applied. Losses from plots receiving no nutrient inputs were generally small (range: 0-35 kg N ha(-1)) and losses from plots where nitrogen was applied as manure (range: 2-41 kg N ha(-1)) were typically half those from plots with nitrogen applied as fertilizer. Losses during the post-monsoon crops of finger millet were small (typically <5% of total loss) although losses from the one site with blackgram were larger (about 13%). The highest concentrations of nitrate in solution were measured early in the season as the monsoon rains began and immediately following fertilizer applications. Leaching losses are likely to be minimised if manure is applied as a basal nutrient dressing followed by fertilizer nitrogen later in the season.
Resumo:
Sustaining soil fertility is essential to the prosperity of many households in the mid-hills of Nepal, but there are concerns that the breakdown of the traditional linkages between forest, livestock, and cropping systems is adversely affecting fertility. This study used triangulated data from surveys of households, discussion groups, and key informants in 16 wards in eastern and western Nepal to determine the existing practices for soil fertility management, the extent of such practices, and the perception of the direction of changes in soil fertility. The two principal practices for maintaining soil fertility were the application of farmyard manure (FYM) and of chemical fertilizer (mainly urea and diammonium phosphate). Green manuring, in-situ manuring, slicing terrace risers, and burning plant residues are rarely practiced. FYM usage was variable with more generally applied to khet land (average 6053 kg fresh weight manure ha(-1)) than to bari land (average 4185 kg fresh weight manure ha-1) with manure from goats and poultry preferred above that from cows and buffaloes. Almost all households (98%) apply urea to khet land and 87% to bari land, with 45% applying diammonium phosphate to both types of land. Application rates and timings of applications varied considerably both within and between wards suggesting poor knowledge transfer between the research and farming communities. The benefits of chemical fertilizers in terms of ease of application and transportation in comparison with FYM, were perceived to outweigh the widely reported detrimental hardening of soil associated with their continued usage. Among key informants, FYM applied in conjunction with chemical fertilizer was the most popular amendment, with FYM alone preferred more than chemical fertilizer alone - probably because of the latter's long-term detrimental effects. Key informant and householder surveys differed in their perception of fertility changes in the last decade probably because of differences in age and site-specific knowledge. All key informants felt that fertility had declined but among households, only about 40% perceived a decline with the remainder about evenly divided between no change and an increase. Householders with small landholdings (< 0.5 ha) were more likely to perceive increasing soil fertility while those with larger landholdings (> 2 ha) were more likely to perceive declining fertility. Perceived changes in soil fertility were not related to food self-sufficiency. The reasons for the slow spread of new technologies within wards and the poor understanding of optimal use of chemical fertilizers in conjunction with improved quality FYM may repay further investigation in terms of sustaining soil fertility in this region.
Resumo:
[1] We estimate that about 1 km3 of andesitic lava has been produced at Soufrière Hills Volcano, Montserrat from 1995 to 2009. There were three major episodes of extrusion, each lasting about 2 to 3.5 years and producing about 280 to 340 M m3 of lava, and one minor episode. Our estimates account for the dense rock equivalent volumetric contributions from the core and talus components of the lava dome, pyroclastic flow deposits and air-fall deposits. By 2005 at least two thirds of the erupted mass has already entered the sea. The average lava flux across the major extrusion episodes has been 3–5 m3s−1, with short-period (10–15 days) pulses up to 10–20 m3s−1. The first and third episodes of extrusion show similar flux histories suggesting similar behaviour of the system ten years apart. Waning flux towards the end of each episode may be caused by declining overpressure in the magma reservoir.
Resumo:
We examine the motion of the ground surface on the Soufriere Hills Volcano, Montserrat between 1998 and 2000 using radar interferometry (InSAR). To minimise the effects of variable atmospheric water vapour on the InSAR measurements we use independently-derived measurements of the radar path delay from six continuous GPS receivers. The surfaces providing a measurable inter-ferometric signal are those on pyroclastic flow deposits, mainly emplaced in 1997. Three types of surface motion can be discriminated. Firstly, the surfaces of thick, valley-filling deposits subsided at rates of 150-120 mm/year in the year after emplacement to 50-30 mm/year two years later. This must be due to contraction and settling effects during cooling. The second type is the near-field motion localised within about one kilometre of the dome. Both subsidence and uplift events are seen and though the former could be due to surface gravitational effects, the latter may reflect shallow (< 1 km) pressurisation effects within the conduit/dome. Far-field motions of the surface away from the deeply buried valleys are interpreted as crustal strains. Because the flux of magma to the surface stopped from March 1998 to November 1999 and then resumed from November 1999 through 2000, we use InSAR data from these two periods to test the crustal strain behaviour of three models of magma supply: open, depleting and unbalanced. The InSAR observations of strain gradients of 75-80 mm/year/krn uplift during the period of quiescence on the western side of the volcano are consistent with an unbalanced model in which magma supply into a crustal magma chamber continues during quiescence, raising chamber pressure that is then released upon resumption of effusion. GPS motion vectors agree qualitatively with the InSAR displacements but are of smaller magnitude. The discrepancy may be due to inaccurate compensation for atmospheric delays in the InSAR data. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
During the Soufrière Hills eruption, vulcanian explosions have generally occurred 1) in episodic cycles; 2) isolated during pauses in extrusion, and 3) after major collapses of the dome. In a different eruptive context, significant vulcanian explosions occurred on 29 July 2008, 3 December 2008, and 3 January 2009. Deposits are pumiceous except for the 3 December event. We reconstructed the dispersal pattern of the deposits and their textural characteristics to evaluate erupted volume and vesicularity of the magma at fragmentation. We discuss the implications of these explosions in terms of eruptive processes and chronology, and the hazards posed by their sudden and often unheralded occurrence. We suggest that overpressurization of the conduit can develop over time-scales of months to weeks by a process of self-sealing of conduit walls and/or the cooling dome by silica polymorphs. This work provides new insights for understanding the generation of hazardous vulcanian explosions at andesitic volcanoes.
Resumo:
The third episode of lava dome growth at Soufrière Hills Volcano began 1 August 2005 and ended 20 April 2007. Volumes of the dome and talus produced were measured using a photo-based method with a calibrated camera for increased accuracy. The total dense rock equivalent (DRE) volume of extruded andesite magma (306 ± 51 Mm3) was similar within error to that produced in the earlier episodes but the average extrusion rate was 5.6 ± 0.9 m3s−1 (DRE), higher than the previous episodes. Extrusion rates varied in a pulsatory manner from <0.5 m3s−1 to ∼20 m3s−1. On 18 May 2006, the lava dome had reached a volume of 85 Mm3 DRE and it was removed in its entirety during a massive dome collapse on 20 May 2006. Extrusion began again almost immediately and built a dome of 170 Mm3 DRE with a summit height 1047 m above sea level by 4 April 2007. There were few moderate-sized dome collapses (1–10 Mm3) during this extrusive episode in contrast to the first episode of dome growth in 1995–8 when they were numerous. The first and third episodes of dome growth showed a similar pattern of low (<0.5 m3s−1) but increasing magma flux during the early stages, with steady high flux after extrusion of ∼25 Mm3