54 resultados para Circular Statistics
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper provides for the first time an objective short-term (8 yr) climatology of African convective weather systems based on satellite imagery. Eight years of infrared International Satellite Cloud Climatology Project-European Space Agency's Meteorological Satellite (ISCCP-Meteosat) satellite imagery has been analyzed using objective feature identification, tracking, and statistical techniques for the July, August, and September periods and the region of Africa and the adjacent Atlantic ocean. This allows various diagnostics to be computed and used to study the distribution of mesoscale and synoptic-scale convective weather systems from mesoscale cloud clusters and squall lines to tropical cyclones. An 8-yr seasonal climatology (1983-90) and the seasonal cycle of this convective activity are presented and discussed. Also discussed is the dependence of organized convection for this region, on the orography, convective, and potential instability and vertical wind shear using European Centre for Medium-Range Weather Forecasts reanalysis data.
Resumo:
Turbulence statistics obtained by direct numerical simulations are analysed to investigate spatial heterogeneity within regular arrays of building-like cubical obstacles. Two different array layouts are studied, staggered and square, both at a packing density of λp=0.25 . The flow statistics analysed are mean streamwise velocity ( u− ), shear stress ( u′w′−−−− ), turbulent kinetic energy (k) and dispersive stress fraction ( u˜w˜ ). The spatial flow patterns and spatial distribution of these statistics in the two arrays are found to be very different. Local regions of high spatial variability are identified. The overall spatial variances of the statistics are shown to be generally very significant in comparison with their spatial averages within the arrays. Above the arrays the spatial variances as well as dispersive stresses decay rapidly to zero. The heterogeneity is explored further by separately considering six different flow regimes identified within the arrays, described here as: channelling region, constricted region, intersection region, building wake region, canyon region and front-recirculation region. It is found that the flow in the first three regions is relatively homogeneous, but that spatial variances in the latter three regions are large, especially in the building wake and canyon regions. The implication is that, in general, the flow immediately behind (and, to a lesser extent, in front of) a building is much more heterogeneous than elsewhere, even in the relatively dense arrays considered here. Most of the dispersive stress is concentrated in these regions. Considering the experimental difficulties of obtaining enough point measurements to form a representative spatial average, the error incurred by degrading the sampling resolution is investigated. It is found that a good estimate for both area and line averages can be obtained using a relatively small number of strategically located sampling points.
Resumo:
The scattering of small amplitude water waves by a finite array of locally axisymmetric structures is considered. Regions of varying quiescent depth are included and their axisymmetric nature, together with a mild-slope approximation, permits an adaptation of well-known interaction theory which ultimately reduces the problem to a simple numerical calculation. Numerical results are given and effects due to regions of varying depth on wave loading and free-surface elevation are presented.
Resumo:
A stochastic parameterization scheme for deep convection is described, suitable for use in both climate and NWP models. Theoretical arguments and the results of cloud-resolving models, are discussed in order to motivate the form of the scheme. In the deterministic limit, it tends to a spectrum of entraining/detraining plumes and is similar to other current parameterizations. The stochastic variability describes the local fluctuations about a large-scale equilibrium state. Plumes are drawn at random from a probability distribution function (pdf) that defines the chance of finding a plume of given cloud-base mass flux within each model grid box. The normalization of the pdf is given by the ensemble-mean mass flux, and this is computed with a CAPE closure method. The characteristics of each plume produced are determined using an adaptation of the plume model from the Kain-Fritsch parameterization. Initial tests in the single column version of the Unified Model verify that the scheme is effective in producing the desired distributions of convective variability without adversely affecting the mean state.
Resumo:
Resumo:
A regional climate model is used to investigate changes in Israel and Jordan precipitation at the end of the 21st century on daily to monthly timescales. The model predicts that this region will get significantly drier at the peak of the rainy season, reflecting a reduction in both the frequency and duration of rainy events. These changes may be associated with a reduction in the strength of the Mediterranean storm track
Resumo:
Many time series are measured monthly, either as averages or totals, and such data often exhibit seasonal variability-the values of the series are consistently larger for some months of the year than for others. A typical series of this type is the number of deaths each month attributed to SIDS (Sudden Infant Death Syndrome). Seasonality can be modelled in a number of ways. This paper describes and discusses various methods for modelling seasonality in SIDS data, though much of the discussion is relevant to other seasonally varying data. There are two main approaches, either fitting a circular probability distribution to the data, or using regression-based techniques to model the mean seasonal behaviour. Both are discussed in this paper.
Resumo:
Direct numerical simulations of turbulent flow over regular arrays of urban-like, cubical obstacles are reported. Results are analysed in terms of a formal spatial averaging procedure to enable interpretation of the flow within the arrays as a canopy flow, and of the flow above as a rough wall boundary layer. Spatial averages of the mean velocity, turbulent stresses and pressure drag are computed. The statistics compare very well with data from wind-tunnel experiments. Within the arrays the time-averaged flow structure gives rise to significant 'dispersive stress' whereas above the Reynolds stress dominates. The mean flow structure and turbulence statistics depend significantly on the layout of the cubes. Unsteady effects are important, especially in the lower canopy layer where turbulent fluctuations dominate over the mean flow.
Resumo:
We describe the main features of a program written to perform electronic marking of quantitative or simple text questions. One of the main benefits is that it can check answers for being consistent with earlier errors, so can cope with a range of numerical questions. We summarise our experience of using it in a statistics course taught to 200 bioscience students.
Resumo:
Quadrature Phase Shift Keying (QPSK) and Dual Carrier Modulation (DCM) are currently used as the modulation schemes for Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) in the ECMA-368 defined Ultra-Wideband (UWB) radio platform. ECMA-368 has been chosen as the physical radio platform for many systems including Wireless USB (W-USB), Bluetooth 3.0 and Wireless HDMI; hence ECMA-368 is an important issue to consumer electronics and the users’ experience of these products. To enable the transport of high-rate USB, ECMA-368 offers up to 480 Mb/s instantaneous bit rate to the Medium Access Control (MAC) layer, but depending on radio channel conditions dropped packets unfortunately result in a lower throughput. This paper presents improvement on a high data rate modulation scheme that fits within the configuration of the current standard increasing system throughput by achieving 600 Mb/s (reliable to 3.2 meters) thus maintaining the high rate USB throughput even with a moderate level of dropped packets. The modulation system is termed improved and optimal Dual Circular 32-QAM (DC 32-QAM). The system performance for improved and optimal DC 32-QAM modulation is presented and compared with previous DC 32- QAM, 16-QAM and DCM.