5 resultados para Cicle slips
em CentAUR: Central Archive University of Reading - UK
Resumo:
Different systems, different purposes – but how do they compare as learning environments? We undertook a survey of students at the University, asking whether they learned from their use of the systems, whether they made contact with other students through them, and how often they used them. Although it was a small scale survey, the results are quite enlightening and quite surprising. Blackboard is populated with learning material, has all the students on a module signed up to it, a safe environment (in terms of Acceptable Use and some degree of staff monitoring) and provides privacy within the learning group (plus lecturer and relevant support staff). Facebook, on the other hand, has no learning material, only some of the students using the system, and on the face of it, it has the opportunity for slips in privacy and potential bullying because the Acceptable Use policy is more lax than an institutional one, and breaches must be dealt with on an exception basis, when reported. So why do more students find people on their courses through Facebook than Blackboard? And why are up to 50% of students reporting that they have learned from using Facebook? Interviews indicate that students in subjects which use seminars are using Facebook to facilitate working groups – they can set up private groups which give them privacy to discuss ideas in an environment which perceived as safer than Blackboard can provide. No staff interference, unless they choose to invite them in, and the opportunity to select who in the class can engage. The other striking finding is the difference in use between the genders. Males are using blackboard more frequently than females, whilst the reverse is true for Facebook. Interviews suggest that this may have something to do with needing to access lecture notes… Overall, though, it appears that there is little relationship between the time spent engaging with Blackboard and reports that students have learned from it. Because Blackboard is our central repository for notes, any contact is likely to result in some learning. Facebook, however, shows a clear relationship between frequency of use and perception of learning – and our students post frequently to Facebook. Whilst much of this is probably trivia and social chit chat, the educational elements of it are, de facto, contructivist in nature. Further questions need to be answered - Is the reason the students learn from Facebook because they are creating content which others will see and comment on? Is it because they can engage in a dialogue, without the risk of interruption by others?
Resumo:
The foraminiferal-rich pelagic Bateig Limestone forms several varieties of the important building stones quarried at Bateig Hill in southeastern Spain. Three principal ichnofabrics (Bichordites, mottled-Palaeophycus and mottled-Ophiomorpha) are recognized, which are present in at least two (possibly up to four) repeated successions (cycles). Each succession begins with an erosional event. The Bichordites ichnofabric represents a new type of facies, formed as thin turbidity/grain flow, stratiform units derived from sediment slips off a fault into deep water. Each slipped unit became almost completely bioturbated by infaunal echinoids, colonizing by lateral migration. Because of the thinness of the units, successive colonizations tended to truncate the underlying burrows giving rise to a pseudo-stratification. As the Bichordites ichnofabric accumulated on the fault apron, thus reducing the effective height of the fault scarp, the substrate gradually came under the influence of currents traversing the shelf. This led to a change in hydraulic regime, and to the mottled-Palaeophycus and mottled-Ophiomorpha ichnofabrics in sediment deposited under bed load transport, and associated with laminar and cross-stratified beds and local muddy intervals. Reactivation of the fault triggered erosion and channeling and a return to grain flow sedimentation, and to the Bichordites ichnofabric of the succeeding cycle. The highest unit of the Bateig Limestone is formed entirely of cross-stratified calcarenites with occasional Ophiomorpha (Ophiomorpha-primary lamination ichnofabric) and is similar to many shallow marine facies but they still bear a significant content of pelagic foraminifera. The sedimentary setting bears resemblance with that described for the Pleistocene Monte Torre Paleostrait and the modem Strait of Messina (Italy), where the narrow morphology of the depositional area enhanced tidal currents and allowed for high-energy sandy deposition in relatively deep areas. More data on the Miocene paleogeography of the Bateig area should provide further testing for this hypothesis. The ichnofacies and stacking of the Bateig Limestone differ from the classic Seilacherian model in that they reflect changes in hydraulic process and are associated with faulting and subsidence and changes in sediment supply. Recognition of the unusual ichnofabrics and their relationships provides a clear indication of the overall dynamic setting. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Hoof abrasion and slips on floors are known to have negative effects on animal health and welfare. This paper describes a new design of test rig for use in a universal materials test machine. The rig enables the frictional and abrasion-resisting properties of hoof horn to be investigated under controlled conditions, in vitro. To assess the performance of the rig, pilot experiments were carried out which indicated both test surface roughness and specimen hydration interact to alter frictional coefficient and mechanical work done to lose a unit volume of hoof material by abrasive wear.
Resumo:
The mechanism of active stress generation in tension wood is still not fully understood. To characterize the functional interdependency between the G-layer and the secondary cell wall, nanostructural characterization and mechanical tests were performed on native tension wood tissues of poplar (Populus nigra x Populus deltoids) and on tissues in which the G-layer was removed by an enzymatic treatment. In addition to the well-known axial orientation of the cellulose fibrils in the G-layer, it was shown that the microfibril angle of the S2-layer was very large (about 36 degrees). The removal of the G-layer resulted in an axial extension and a tangential contraction of the tissues. The tensile stress-strain curves of native tension wood slices showed a jagged appearance after yield that could not be seen in the enzyme-treated samples. The behaviour of the native tissue was modelled by assuming that cells deform elastically up to a critical strain at which the G-layer slips, causing a drop in stress. The results suggest that tensile stresses in poplar are generated in the living plant by a lateral swelling of the G-layer which forces the surrounding secondary cell wall to contract in the axial direction.