10 resultados para Chilling
em CentAUR: Central Archive University of Reading - UK
Resumo:
Maize (Zea mays L.) seedlings of two cultivars (cv. Bastion adapted to W. Europe, and cv. Batan 8686 adapted to the highlands of Mexico), raised in a glasshouse (19-25 degrees C), were transferred to 4.5 or 9 degrees C at photon flux density (PPFD) of 950 mu mol m(-2) s(-1) with 10-h photoperiod for 58 h and then allowed to recover at 22 degrees C for 16 h (14 h dark and 2 h at PPFD of 180 mu mol m(-2) s(-1)). The ultrastructural responses after 4 h or 26 h at 4.5 degrees C were the disappearance of starch grains in the bundle sheath chloroplasts and the contraction of intrathylakoid spaces in stromal thylakoids of the mesophyll chloroplasts. At this time, bundle sheath chloroplasts of cv. Batan 8686 formed peripheral reticulum. Prolonged stress at 4.5 degrees C (50 h) caused plastid swelling and the dilation of intrathylakoid spaces, mainly in mesophyll chloroplasts. Bundle sheath chloroplasts of cv. Batan 8686 seedlings appeared well preserved in shape and structure. Batan 8686 had also higher net photosynthetic rates during chilling and recovery than Bastion. Extended leaf photobleaching developed during the recovery period after chilling at 4.5 degrees C. This was associated with collapsed chloroplast envelopes, disintegrated chloroplasts and very poor staining.
Resumo:
The emergence behaviour of weed species in relation to cultural and meteorological events was studied. Dissimilarities between populations in dormancy and germination ecology, between-year maturation conditions and seed quality and burial site climate all contribute to potentially unpredictable variability. Therefore, a weed emergence data set was produced for weed seeds of Stellaria media and Chenopodium album matured and collected from three populations (Italy, Sweden and UK). The seeds were collected in two consecutive seasons (1999 and 2000) and subsequently buried in the autumn of the same year of maturation in eight contrasting climatic locations throughout Europe and the USA. The experiment sought to explore and explain differences between the three populations in their emergence behaviour. Evidence was demonstrated of synchrony in the timing of the emergence of different populations of a species at a given burial site. The relative magnitudes of emergence from the three populations at a given burial site in a given year were generally similar across all the burial sites in the study. The resulting data set was also used to construct a simple weed emergence model, which was tested for its application to the range of different burial environments and populations. The study demonstrated the possibility of using a simple thermal time-based model to describe part of the emergence behaviour across different burial sites, seed populations and seasons, and a simple winter chilling relationship to adjust for the magnitude of the flush of emergence at a given burial site. This study demonstrates the possibility of developing robust generic models for simple predictions of emergence timing across populations.
Resumo:
Temperate-zone crops require a period of winter chilling to terminate dormancy and ensure adequate bud break the following spring. The exact chilling requirement of blackcurrant (Ribes nigrum), a commercially important crop in northern Europe, is relatively unknown. Chill unit models have been successfully utilized to determine the optimum chilling temperature of a range of crops, with one chill unit equating to I h exposure to the optimum temperature for chill satisfaction. Two-year-old R. nigrum plants of the cultivars 'Ben Gairn', 'Ben Hope' and 'Ben Tirran' were exposed to temperatures of -10.1 degrees C. -3.4 degrees C. 0.1 degrees C, 1.5 degrees C, 2.1 degrees C, 3.4 degrees C or 8.9 degrees C (+/- 0.7 degrees C) for durations of 0, 2, 4, 6, 8 or 10 weeks and multiple regression analyses used to determine the optimum temperature for chill satisfaction. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Flowering is generally considered to be advanced by water deficits in many woody perennial species. A long-standing paradigm being that as a plant senses severe environmental conditions resources are diverted away from vegetative growth and towards reproduction before death. It is demonstrated that in Rhododendron flowering is promoted under water deficit treatments. However, the promotion of flowering is not achieved via all increase in floral initiation, but through separate developmental responses. If regulated deficit irrigation (RDI) is imposed prior to the time of initiation, fewer vegetative nodes are formed before the apical meristems switch to floral initiation, and chronologically, floral initiation occurs earlier. Both RDI and partial rootzone drying (PRD) treatments stimulate the development of more flowers Oil each inflorescence if the treatments are continued after the plant has undergone floral initiation. However, floral initiation is inhibited by soil water deficits. If the soil water deficit continues beyond the stages of floral development then anthesis call occur prematurely oil the fully formed floral buds without a need for a winter chilling treatment. It is hypothesised that inhibition of floral initiation in plants experiencing severe soil water deficits results from the inhibitory action Of ABA transportation to the apical meristem from stressed roots. It is demonstrated that ABA applications to well-watered Rhododendron inhibit floral initiation. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Emerging parasitoids of aphids encounter secondary plant chemistry from cues left by the mother parasitoid at oviposition and from the plant-feeding of the host aphid. In practice, however, it is secondary plant cheinistry oil the Surface of the aphid mummy which influences parasitoid olfactory behaviour. Offspring of Aphidius colemani reared oil Myzus persicae on artificial diet did no distinguish between the odours of bean and cabbage, but showed a clear preference for cabbage odour if sinigrin had been painted oil the back of the mummy. Similarly Aphidius rhopalosiphi reared on Metopolophium dirhodum on wheat preferred the odour of wheat plants grown near tomato plants to odour of wheat alone if the wheat plants oil which they had been reared had been exposed to the volatiles of nearby tomato plants. Aphidius rhopalosiphi reared on M dirhodum, and removed from the mummy before emergence, showed a preference for the odour of a different wheat cultivar if they had contacted a mummy from that cultivar, and similar results were obtained with A. colemani naturally emerged from M. persicae mummies. Aphidius colemani emerged from mummies oil one crucifer were allowed to contact in sequence (for 45 min each) mummies from two different crucifers. The mumber of attacks made in 10 min oil M. persicae was always significantly higher when aphids were feeding oil the same plant as the origin of the last MUMMY offered, or oil the second plant if aphids feeding on the third plant were not included. Chilling emerged A. colemani for 24 h at 5 degrees C appeared to erase the imprint of secondary plant chemistry, and they no longer showed host plant odour preferences in the olfactometer. When the parasitoids were chilled after three Successive mummy experiences, memory of the last experience appeared at least temporarily erased and preference was then shown for the chemistry of the second experience.
Resumo:
The acid phosphatase (orthophosphoric-monoester phosphohydrolase, EC 3.1.3.2) complement from dormant hazel (Corylus avellana L.) seeds was found to exhibit significant electrophoretic heterogeneity partially attributable to the presence of distinct molecular forms. In axiferous tissue, total acid phosphatase activity increased in a biphasic fashion during chilling, a treatment necessary to alleviate seed dormancy. Three acid phosphatase isozymes were isolated from cotyledons of dormant hazel seeds by successive ammonium sulphate precipitation, size-exclusion, Concanavalin A affinity, cation- and anion-exchange chromatographies resulting in 75-, 389- and 191-fold purification (APase1, APase2, APase3, respectively). The three glycosylated isoforms were isolated to catalytic homogeneity as determined by electrophoretic, kinetic and heat-inactivation studies. The native acid phosphatase complement of hazel seeds had an apparent Mr of 81.5±3.5 kDa as estimated by size-exclusion chromatography, while the determined pI values were 5.1 (APase1), 6.9 (APase2) and 7.3 (APase3). The optimum pH for p-nitrophenyl phosphate hydrolysis was pH 3 (APase1), pH 5.6 (APase2) and pH 6 (APase3). The hazel isozymes hydrolysed a variety of phosphorylated substrates in a non-specific manner, exhibiting low Km and the highest specificity constant (Vmax/Km) for pyrophosphate. They were not primary phytases since they could not initiate phytic acid hydrolysis, while APase2 and APase3 had significant phospho-tyrosine phosphatase activity. Inorganic phosphate was a competitive inhibitor, while activity was significantly impaired in the presence of vanadate and fluoride.
Resumo:
The aim of this study was to evaluate the ability of an Escherichia coli with the multiple antibiotic resistance (MAR) phenotype to withstand the stresses of slaughter compared to an isogenic progenitor strain. A wild type E. coli isolate (345-2RifC) of porcine origin was used to derive 3 isogenic MAR mutants. Escherichia coli 345-2RifC and its MAR derivatives were inoculated into separate groups of pigs. Once colonisation was established, the pigs were slaughtered and persistence of the E. coli strains in the abattoir environment and on the pig carcasses was monitored and compared. No significant difference (P>0.05) was detected between the shedding of the different E. coli strains from the live pigs. Both the parent strain and its MAR derivatives persisted in the abattoir environment, however the parent strain was recovered from 6 of the 13 locations sampled while the MAR derivatives were recovered from 11 of 13 and the number of MAR E. coil recovered was 10-fold higher than the parent strain at half of the locations. The parent strain was not recovered from any of the 6 chilled carcasses whereas the MAR derivatives were recovered from 3 out of 5 (P<0.001). This study demonstrates that the expression of MAR in 345-2RifC increased its ability to survive the stresses of the slaughter and chilling processes. Therefore in E. coli, MAR can give a selective advantage, compared to non-MAR strains, for persistence on chilled carcasses thereby facilitating transit of these strains through the food chain. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Question: What plant properties might define plant functional types (PFTs) for the analysis of global vegetation responses to climate change, and what aspects of the physical environment might be expected to predict the distributions of PFTs? Methods: We review principles to explain the distribution of key plant traits as a function of bioclimatic variables. We focus on those whole-plant and leaf traits that are commonly used to define biomes and PFTs in global maps and models. Results: Raunkiær's plant life forms (underlying most later classifications) describe different adaptive strategies for surviving low temperature or drought, while satisfying requirements for reproduction and growth. Simple conceptual models and published observations are used to quantify the adaptive significance of leaf size for temperature regulation, leaf consistency for maintaining transpiration under drought, and phenology for the optimization of annual carbon balance. A new compilation of experimental data supports the functional definition of tropical, warm-temperate, temperate and boreal phanerophytes based on mechanisms for withstanding low temperature extremes. Chilling requirements are less well quantified, but are a necessary adjunct to cold tolerance. Functional traits generally confer both advantages and restrictions; the existence of trade-offs contributes to the diversity of plants along bioclimatic gradients. Conclusions: Quantitative analysis of plant trait distributions against bioclimatic variables is becoming possible; this opens up new opportunities for PFT classification. A PFT classification based on bioclimatic responses will need to be enhanced by information on traits related to competition, successional dynamics and disturbance.
Resumo:
In the present contribution, I discuss the claim, endorsed by a number of authors, that contributing to a collective harm is the ground for special responsibilities to the victims of that harm. Contributors should, between them, cover the costs of the harms they have inflicted, at least if those harms would otherwise be rights-violating. I raise some doubts about the generality of this principle before moving on to sketch a framework for thinking about liability for the costs of harms in general. This framework uses a contractualist framework to build an account of how to think about liability for costs on the basis of the presumably attractive thought that individual agents should have as much control over their liabilities as is compatible with others having like control. I then use that framework to suggest that liability on the basis of contribution should be restricted to cases in which the contributors could have avoided their contribution relatively costlessly, in which meeting the liability is not crippling for them, and in which such a liability would not have chilling effects, either on them or on third parties. This account of the grounds for contributory liability also has the advantage of avoiding a number of awkward questions about what counts as a contribution by shifting the issue away from often unanswerable questions about the precise causal genesis of some harm or other. Instead, control over conduct, which plausibly has some relation to the harm, becomes crucial. On the basis of this account, I then investigate whether a number of uses of the contributory principle are entirely appropriate. I argue that contributory liability is not appropriate for cases of collective harms committed by coordinated groups in the way that, for example, Iris Marion Young and Thomas Pogge have suggested and that further investigation of how members of such groups may be liable will be needed.