2 resultados para Chiclayo, off Peru

em CentAUR: Central Archive University of Reading - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Building on studies by Brayshaw et al. (2009, 2011) of the basic ingredients of the North Atlantic storm track (land-sea contrast, orography and SST), this article investigates the impact of Eurasian topography and Pacific SST anomalies on the North Pacific and Atlantic storm tracks through a hierarchy of atmospheric GCM simulations using idealised boundary conditions in the HadGAM1 model. The Himalaya-Tibet mountain complex is found to play a crucial role in shaping the North Pacific storm track. The northward deflection of the westerly flow around northern Tibet generates an extensive pool of very cold air in the north-eastern tip of the Asian continent, which strengthens the meridional temperature gradient and favours baroclinic growth in the western Pacific. The Kuroshio SST front is also instrumental in strengthening the Pacific storm track through its impact on near-surface baroclinicity, while the warm waters around Indonesia tend to weaken it through the impact on baroclinicity of stationary Rossby waves propagating poleward from the convective heating regions. Three mechanisms by which the Atlantic storm track may be affected by changes in the boundary conditions upstream of the Rockies are discussed. In the model configuration used here, stationary Rossby waves emanating from Tibet appear to weaken the North Atlantic storm track substantially, whereas those generated over the cold waters off Peru appear to strengthen it. Changes in eddy-driven surface winds over the Pacific generally appear to modify the flow over the Rocky Mountains, leading to consistent modifications in the Atlantic storm track. The evidence for each of these mechanisms is, however, ultimately equivocal in these simulations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding the sources of systematic errors in climate models is challenging because of coupled feedbacks and errors compensation. The developing seamless approach proposes that the identification and the correction of short term climate model errors have the potential to improve the modeled climate on longer time scales. In previous studies, initialised atmospheric simulations of a few days have been used to compare fast physics processes (convection, cloud processes) among models. The present study explores how initialised seasonal to decadal hindcasts (re-forecasts) relate transient week-to-month errors of the ocean and atmospheric components to the coupled model long-term pervasive SST errors. A protocol is designed to attribute the SST biases to the source processes. It includes five steps: (1) identify and describe biases in a coupled stabilized simulation, (2) determine the time scale of the advent of the bias and its propagation, (3) find the geographical origin of the bias, (4) evaluate the degree of coupling in the development of the bias, (5) find the field responsible for the bias. This strategy has been implemented with a set of experiments based on the initial adjustment of initialised simulations and exploring various degrees of coupling. In particular, hindcasts give the time scale of biases advent, regionally restored experiments show the geographical origin and ocean-only simulations isolate the field responsible for the bias and evaluate the degree of coupling in the bias development. This strategy is applied to four prominent SST biases of the IPSLCM5A-LR coupled model in the tropical Pacific, that are largely shared by other coupled models, including the Southeast Pacific warm bias and the equatorial cold tongue bias. Using the proposed protocol, we demonstrate that the East Pacific warm bias appears in a few months and is caused by a lack of upwelling due to too weak meridional coastal winds off Peru. The cold equatorial bias, which surprisingly takes 30 years to develop, is the result of an equatorward advection of midlatitude cold SST errors. Despite large development efforts, the current generation of coupled models shows only little improvement. The strategy proposed in this study is a further step to move from the current random ad hoc approach, to a bias-targeted, priority setting, systematic model development approach.