16 resultados para Cheops Mud Volcano
em CentAUR: Central Archive University of Reading - UK
Resumo:
[1] We estimate that about 1 km3 of andesitic lava has been produced at Soufrière Hills Volcano, Montserrat from 1995 to 2009. There were three major episodes of extrusion, each lasting about 2 to 3.5 years and producing about 280 to 340 M m3 of lava, and one minor episode. Our estimates account for the dense rock equivalent volumetric contributions from the core and talus components of the lava dome, pyroclastic flow deposits and air-fall deposits. By 2005 at least two thirds of the erupted mass has already entered the sea. The average lava flux across the major extrusion episodes has been 3–5 m3s−1, with short-period (10–15 days) pulses up to 10–20 m3s−1. The first and third episodes of extrusion show similar flux histories suggesting similar behaviour of the system ten years apart. Waning flux towards the end of each episode may be caused by declining overpressure in the magma reservoir.
Resumo:
We examine the motion of the ground surface on the Soufriere Hills Volcano, Montserrat between 1998 and 2000 using radar interferometry (InSAR). To minimise the effects of variable atmospheric water vapour on the InSAR measurements we use independently-derived measurements of the radar path delay from six continuous GPS receivers. The surfaces providing a measurable inter-ferometric signal are those on pyroclastic flow deposits, mainly emplaced in 1997. Three types of surface motion can be discriminated. Firstly, the surfaces of thick, valley-filling deposits subsided at rates of 150-120 mm/year in the year after emplacement to 50-30 mm/year two years later. This must be due to contraction and settling effects during cooling. The second type is the near-field motion localised within about one kilometre of the dome. Both subsidence and uplift events are seen and though the former could be due to surface gravitational effects, the latter may reflect shallow (< 1 km) pressurisation effects within the conduit/dome. Far-field motions of the surface away from the deeply buried valleys are interpreted as crustal strains. Because the flux of magma to the surface stopped from March 1998 to November 1999 and then resumed from November 1999 through 2000, we use InSAR data from these two periods to test the crustal strain behaviour of three models of magma supply: open, depleting and unbalanced. The InSAR observations of strain gradients of 75-80 mm/year/krn uplift during the period of quiescence on the western side of the volcano are consistent with an unbalanced model in which magma supply into a crustal magma chamber continues during quiescence, raising chamber pressure that is then released upon resumption of effusion. GPS motion vectors agree qualitatively with the InSAR displacements but are of smaller magnitude. The discrepancy may be due to inaccurate compensation for atmospheric delays in the InSAR data. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
During the Soufrière Hills eruption, vulcanian explosions have generally occurred 1) in episodic cycles; 2) isolated during pauses in extrusion, and 3) after major collapses of the dome. In a different eruptive context, significant vulcanian explosions occurred on 29 July 2008, 3 December 2008, and 3 January 2009. Deposits are pumiceous except for the 3 December event. We reconstructed the dispersal pattern of the deposits and their textural characteristics to evaluate erupted volume and vesicularity of the magma at fragmentation. We discuss the implications of these explosions in terms of eruptive processes and chronology, and the hazards posed by their sudden and often unheralded occurrence. We suggest that overpressurization of the conduit can develop over time-scales of months to weeks by a process of self-sealing of conduit walls and/or the cooling dome by silica polymorphs. This work provides new insights for understanding the generation of hazardous vulcanian explosions at andesitic volcanoes.
Resumo:
The third episode of lava dome growth at Soufrière Hills Volcano began 1 August 2005 and ended 20 April 2007. Volumes of the dome and talus produced were measured using a photo-based method with a calibrated camera for increased accuracy. The total dense rock equivalent (DRE) volume of extruded andesite magma (306 ± 51 Mm3) was similar within error to that produced in the earlier episodes but the average extrusion rate was 5.6 ± 0.9 m3s−1 (DRE), higher than the previous episodes. Extrusion rates varied in a pulsatory manner from <0.5 m3s−1 to ∼20 m3s−1. On 18 May 2006, the lava dome had reached a volume of 85 Mm3 DRE and it was removed in its entirety during a massive dome collapse on 20 May 2006. Extrusion began again almost immediately and built a dome of 170 Mm3 DRE with a summit height 1047 m above sea level by 4 April 2007. There were few moderate-sized dome collapses (1–10 Mm3) during this extrusive episode in contrast to the first episode of dome growth in 1995–8 when they were numerous. The first and third episodes of dome growth showed a similar pattern of low (<0.5 m3s−1) but increasing magma flux during the early stages, with steady high flux after extrusion of ∼25 Mm3
Resumo:
Lava domes comprise core, carapace, and clastic talus components. They can grow endogenously by inflation of a core and/or exogenously with the extrusion of shear bounded lobes and whaleback lobes at the surface. Internal structure is paramount in determining the extent to which lava dome growth evolves stably, or conversely the propensity for collapse. The more core lava that exists within a dome, in both relative and absolute terms, the more explosive energy is available, both for large pyroclastic flows following collapse and in particular for lateral blast events following very rapid removal of lateral support to the dome. Knowledge of the location of the core lava within the dome is also relevant for hazard assessment purposes. A spreading toe, or lobe of core lava, over a talus substrate may be both relatively unstable and likely to accelerate to more violent activity during the early phases of a retrogressive collapse. Soufrière Hills Volcano, Montserrat has been erupting since 1995 and has produced numerous lava domes that have undergone repeated collapse events. We consider one continuous dome growth period, from August 2005 to May 2006 that resulted in a dome collapse event on 20th May 2006. The collapse event lasted 3 h, removing the whole dome plus dome remnants from a previous growth period in an unusually violent and rapid collapse event. We use an axisymmetrical computational Finite Element Method model for the growth and evolution of a lava dome. Our model comprises evolving core, carapace and talus components based on axisymmetrical endogenous dome growth, which permits us to model the interface between talus and core. Despite explicitly only modelling axisymmetrical endogenous dome growth our core–talus model simulates many of the observed growth characteristics of the 2005–2006 SHV lava dome well. Further, it is possible for our simulations to replicate large-scale exogenous characteristics when a considerable volume of talus has accumulated around the lower flanks of the dome. Model results suggest that dome core can override talus within a growing dome, potentially generating a region of significant weakness and a potential locus for collapse initiation.
Resumo:
During many lava dome-forming eruptions, persistent rockfalls and the concurrent development of a substantial talus apron around the foot of the dome are important aspects of the observed activity. An improved understanding of internal dome structure, including the shape and internal boundaries of the talus apron, is critical for determining when a lava dome is poised for a major collapse and how this collapse might ensue. We consider a period of lava dome growth at the Soufrière Hills Volcano, Montserrat, from August 2005 to May 2006, during which a 100 × 106 m3 lava dome developed that culminated in a major dome-collapse event on 20 May 2006. We use an axi-symmetrical Finite Element Method model to simulate the growth and evolution of the lava dome, including the development of the talus apron. We first test the generic behaviour of this continuum model, which has core lava and carapace/talus components. Our model describes the generation rate of talus, including its spatial and temporal variation, as well as its post-generation deformation, which is important for an improved understanding of the internal configuration and structure of the dome. We then use our model to simulate the 2005 to 2006 Soufrière Hills dome growth using measured dome volumes and extrusion rates to drive the model and generate the evolving configuration of the dome core and carapace/talus domains. The evolution of the model is compared with the observed rockfall seismicity using event counts and seismic energy parameters, which are used here as a measure of rockfall intensity and hence a first-order proxy for volumes. The range of model-derived volume increments of talus aggraded to the talus slope per recorded rockfall event, approximately 3 × 103–13 × 103 m3 per rockfall, is high with respect to estimates based on observed events. From this, it is inferred that some of the volumetric growth of the talus apron (perhaps up to 60–70%) might have occurred in the form of aseismic deformation of the talus, forced by an internal, laterally spreading core. Talus apron growth by this mechanism has not previously been identified, and this suggests that the core, hosting hot gas-rich lava, could have a greater lateral extent than previously considered.
Resumo:
High-resolution satellite radar observations of erupting volcanoes can yield valuable information on rapidly changing deposits and geomorphology. Using the TerraSAR-X (TSX) radar with a spatial resolution of about 2 m and a repeat interval of 11-days, we show how a variety of techniques were used to record some of the eruptive history of the Soufriere Hills Volcano, Montserrat between July 2008 and February 2010. After a 15-month pause in lava dome growth, a vulcanian explosion occurred on 28 July 2008 whose vent was hidden by dense cloud. We were able to show the civil authorities using TSX change difference images that this explosion had not disrupted the dome sufficient to warrant continued evacuation. Change difference images also proved to be valuable in mapping new pyroclastic flow deposits: the valley-occupying block-and-ash component tending to increase backscatter and the marginal surge deposits reducing it, with the pattern reversing after the event. By comparing east- and west-looking images acquired 12 hours apart, the deposition of some individual pyroclastic flows can be inferred from change differences. Some of the narrow upper sections of valleys draining the volcano received many tens of metres of rockfall and pyroclastic flow deposits over periods of a few weeks. By measuring the changing shadows cast by these valleys in TSX images the changing depth of infill by deposits could be estimated. In addition to using the amplitude data from the radar images we also used their phase information within the InSAR technique to calculate the topography during a period of no surface activity. This enabled areas of transient topography, crucial for directing future flows, to be captured.
Resumo:
Using the record of 30 flank eruptions over the last 110 years at Nyamuragira, we have tested the relationship between the eruption dynamics and the local stress field. There are two groups of eruptions based on their duration (< 80days >) that are also clustered in space and time. We find that the eruptions fed by dykes parallel to the East African Rift Valley have longer durations (and larger volumes) than those eruptions fed by dykes with other orientations. This is compatible with a model for compressible magma transported through an elastic-walled dyke in a differential stress field from an over-pressured reservoir (Woods et al., 2006). The observed pattern of eruptive fissures is consistent with a local stress field modified by a northwest-trending, right lateral slip fault that is part of the northern transfer zone of the Kivu Basin rift segment. We have also re-tested with new data the stochastic eruption models for Nyamuragira of Burt et al. (1994). The time-predictable, pressure-threshold model remains the best fit and is consistent with the typically observed declining rate of sulphur dioxide emission during the first few days of eruption with lava emission from a depressurising, closed, crustal reservoir. The 2.4-fold increase in long-term eruption rate that occurred after 1977 is confirmed in the new analysis. Since that change, the record has been dominated by short-duration eruptions fed by dykes perpendicular to the Rift. We suggest that the intrusion of a major dyke during the 1977 volcano-tectonic event at neighbouring Nyiragongo volcano inhibited subsequent dyke formation on the southern flanks of Nyamuragira and this may also have resulted in more dykes reaching the surface elsewhere. Thus that sudden change in output was a result of a changed stress field that forced more of the deep magma supply to the surface. Another volcano-tectonic event in 2002 may also have changed the magma output rate at Nyamuragira.
Resumo:
Using a time series of TerraSAR-X spaceborne radar images we have measured the pulsatory motion of an andesite lava flow over a 14-month period at Bagana volcano, Papua New Guinea. Between October 2010 and December 2011, lava flowed continuously down the western flank of the volcano forming a 3 km-long blocky lava flow with a channel, levees, overflows and branches. We captured four successive pulses of lava advancing down the channel system, the first such behaviour of an andesite flow to be recorded using radar. Each pulse had a volume of the order of 107 m3 emplaced over many weeks. The average extrusion rate estimated from the radar data was 0.92 ± 0.35 m3 s-1 , and varied between 0.3 and 1.8 m3 s-1, with higher rates occurring earlier in each pulse. This, together with observations of sulphur dioxide emissions, explosions and incandescence suggest a variable supply rate of magma through Bagana’s conduit as the most likely source of the pulsatory behaviour.
Resumo:
Interferometric Synthetic Aperture Radar (InSAR) measurements of surface deformation at Nyamuragira Volcano between 1996 and 2010 reveal a variety of co-eruptive and inter-eruptive signals. During 7 of the 8 eruptions in this period deformation was measured that is consistent with the emplacement of shallow near-vertical dykes feeding the eruptive fissures and associated with a NNW-trending fissure zone that traverses the summit caldera. Between eruptions the caldera and the summit part of this fissure zone subsided gradually (b3–5 cm/year). We also find evidence of post-eruption subsidence around the sites of the main vents of some flank eruptions (2002, 2004, 2006, and 2010). In the 6 months prior to the 2010 eruption a10-km wide zone centred on the caldera inflated by 1–2 cm. The low magnitude of this signal suggests that the presumed magma reservoir at 3–8 km depth contains highly compressible magma with little stored elastic strain energy. To the north of the caldera the fissure zone splits into WNW and NE branches around a zone that has a distinct InSAR signal. We interpret this zone to represent an elevated, 'stable' block of basement rocks buried by lavas within the Rift Zone.
Resumo:
Observations of volcanoes extruding andesitic lava to produce lava domes often reveal cyclic behaviour. At Soufriere Hills Volcano, Montserrat, cycles with sub-daily and multi-week periods have been recognised on many occasions. These two types of cycle have been modelled separately as stick-slip magma flow at the junction between a dyke and an overlying cylindrical conduit (Costa et al. 2012), and as the filling and discharge of magma through the elastic-walled dyke (Costa et al., 2007a) respectively. Here, we couple these two models to simulate the behaviour over a period of well-observed multi-week cycles, with accompanying sub-daily cycles, from 13 May to 21 September 1997. The coupled model captures well the asymmetrical first-order behaviour: the first 40% of the multi-week cycle consists of high rates of lava extrusion during short period/high amplitude sub-daily cycles as the dyke reservoir discharges itself. The remainder of the cycle involves increasing pressurization as more magma is stored, and extrusion rate falls, followed by a gradual increase in the period of the sub-daily cycles.
Resumo:
Lava flows can produce changes in topography on the order of 10s-100s of metres. A knowledge of the resulting volume change provides evidence about the dynamics of an eruption. We present a method to measure topographic changes from the differential InSAR phase delays caused by the height differences between the current topography and a Digital Elevation Model (DEM). This does not require a pre-event SAR image, so it does not rely on interferometric phase remaining coherent during eruption and emplacement. Synthetic tests predicts that we can estimate lava thickness of as little as �9 m, given a minimum of 5 interferograms with suitably large orbital baseine separations. In the case of continuous motion, such as lava flow subsidence, we invert interferometric phase simultaneously for topographic change and displacement. We demonstrate the method using data from Santiaguito volcano, Guatemala, and measure increases in lava thickness of up to 140 m between 2000 and 2009, largely associated with activity between 2000 and 2005. We find a mean extrusion rate of 0.43 +/- 0.06 m3/s, which lies within the error bounds of the longer term extrusion rate between 1922-2000. The thickest and youngest parts of the flow deposit were shown to be subsiding at an average rate of �-6 cm/yr. This is the first time that flow thickness and subsidence have been measured simultaneously. We expect this method to be suitable for measurment of landslides and other mass flow deposits as well as lava flows.
Observations of the eruption of the Sarychev volcano and simulations using the HadGEM2 climate model
Resumo:
In June 2009 the Sarychev volcano located in the Kuril Islands to the northeast of Japan erupted explosively, injecting ash and an estimated 1.2 ± 0.2 Tg of sulfur dioxide into the upper troposphere and lower stratosphere, making it arguably one of the 10 largest stratospheric injections in the last 50 years. During the period immediately after the eruption, we show that the sulfur dioxide (SO2) cloud was clearly detected by retrievals developed for the Infrared Atmospheric Sounding Interferometer (IASI) satellite instrument and that the resultant stratospheric sulfate aerosol was detected by the Optical Spectrograph and Infrared Imaging System (OSIRIS) limb sounder and CALIPSO lidar. Additional surface‐based instrumentation allows assessment of the impact of the eruption on the stratospheric aerosol optical depth. We use a nudged version of the HadGEM2 climate model to investigate how well this state‐of‐the‐science climate model can replicate the distributions of SO2 and sulfate aerosol. The model simulations and OSIRIS measurements suggest that in the Northern Hemisphere the stratospheric aerosol optical depth was enhanced by around a factor of 3 (0.01 at 550 nm), with resultant impacts upon the radiation budget. The simulations indicate that, in the Northern Hemisphere for July 2009, the magnitude of the mean radiative impact from the volcanic aerosols is more than 60% of the direct radiative forcing of all anthropogenic aerosols put together. While the cooling induced by the eruption will likely not be detectable in the observational record, the combination of modeling and measurements would provide an ideal framework for simulating future larger volcanic eruptions.