5 resultados para Chemistry Teaching

em CentAUR: Central Archive University of Reading - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The presented study examined the opinion of in-service and prospective chemistry teachers about the importance of usage of molecular and crystal models in secondary-level school practice, and investigated some of the reasons for their (non-) usage. The majority of participants stated that the use of models plays an important role in chemistry education and that they would use them more often if the circumstances were more favourable. Many teachers claimed that three-dimensional (3d) models are still not available in sufficient number at their schools; they also pointed to the lack of available computer facilities during chemistry lessons. The research revealed that, besides the inadequate material circumstances, less than one third of participants are able to use simple (freeware) computer programs for drawing molecular structures and their presentation in virtual space; however both groups of teachers expressed the willingness to improve their knowledge in the subject area. The investigation points to several actions which could be undertaken to improve the current situation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the major differences undergraduates experience during the transition to university is the style of teaching. In schools and colleges most students study key stage 5 subjects in relatively small informal groups where teacher–pupil interaction is encouraged and two-way feedback occurs through question and answer type delivery. On starting in HE students are amazed by the sizes of the classes. For even a relatively small chemistry department with an intake of 60-70 students, biologists, pharmacists, and other first year undergraduates requiring chemistry can boost numbers in the lecture hall to around 200 or higher. In many universities class sizes of 400 are not unusual for first year groups where efficiency is crucial. Clearly the personalised classroom-style delivery is not practical and it is a brave student who shows his ignorance by venturing to ask a question in front of such an audience. In these environments learning can be a very passive process, the lecture acts as a vehicle for the conveyance of information and our students are expected to reinforce their understanding by ‘self-study’, a term, the meaning of which, many struggle to understand. The use of electronic voting systems (EVS) in such situations can vastly change the students’ learning experience from a passive to a highly interactive process. This principle has already been demonstrated in Physics, most notably in the work of Bates and colleagues at Edinburgh.1 These small hand-held devices, similar to those which have become familiar through programmes such as ‘Who Wants to be a Millionaire’ can be used to provide instant feedback to students and teachers alike. Advances in technology now allow them to be used in a range of more sophisticated settings and comprehensive guides on use have been developed for even the most techno-phobic staff.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To introduce a new approach to problem based learning (PBL) used in the context of medicinal chemistry practical class teaching pharmacy students. Design: The described chemistry practical is based on independent studies by small groups of undergraduate students (4-5), who design their own practical work taking relevant professional standards into account. Students are carefully guided by feedback and acquire a set of skills important to their future profession as healthcare professionals. This model has been tailored to the application of PBL in a chemistry practical class setting for a large student cohort (150 students). Assessment: The achievement of learning outcomes is based on the submission of relevant documentation including a certificate of analysis, in addition to peer assessment. Some of the learning outcomes are also assessed in the final written examination at the end of the academic year. Conclusion: The described design of a novel PBL chemistry laboratory course for pharmacy students has been found to be successful. Self-reflective learning and engagement with feedback were encouraged, and students enjoyed the challenging learning experience. Skills that are highly essential for the students’ future careers as healthcare professionals are promoted.