12 resultados para Characterization Of Activated Carbon
em CentAUR: Central Archive University of Reading - UK
Resumo:
The precise atomic structure of activated carbon is unknown, despite its commercial importance. Here we show that the structure of a commercial activated carbon can be imaged directly using aberration corrected transmission electron microscopy. Images are presented both of the as-produced carbon and of the carbon following heat- treatment at 2000°C. In the 2000°C carbon clear evidence is found for the presence of pentagonal rings, suggesting that the carbons have a fullerene-related structure.
Resumo:
The precise atomic structure of activated carbon is unknown, despite its huge commercial importance in the purification of air and water. Diffraction methods have been extensively applied to the study of microporous carbons, but cannot provide an unequivocal identification of their structure. Here we show that the structure of a commercial activated carbon can be imaged directly using aberration-corrected transmission electron microscopy. Images are presented both of the as-produced carbon and of the carbon following heat treatment at 2000 degrees C. In the 2000 degrees C carbon clear evidence is found for the presence of pentagonal rings, suggesting that the carbons have a fullerene-related structure. Such a structure would help to explain the properties of activated carbon, and would also have important implications for the modelling of adsorption on microporous carbons.
Resumo:
The adsorption of gases on microporous carbons is still poorly understood, partly because the structure of these carbons is not well known. Here, a model of microporous carbons based on fullerene- like fragments is used as the basis for a theoretical study of Ar adsorption on carbon. First, a simulation box was constructed, containing a plausible arrangement of carbon fragments. Next, using a new Monte Carlo simulation algorithm, two types of carbon fragments were gradually placed into the initial structure to increase its microporosity. Thirty six different microporous carbon structures were generated in this way. Using the method proposed recently by Bhattacharya and Gubbins ( BG), the micropore size distributions of the obtained carbon models and the average micropore diameters were calculated. For ten chosen structures, Ar adsorption isotherms ( 87 K) were simulated via the hyper- parallel tempering Monte Carlo simulation method. The isotherms obtained in this way were described by widely applied methods of microporous carbon characterisation, i. e. Nguyen and Do, Horvath - Kawazoe, high- resolution alpha(a)s plots, adsorption potential distributions and the Dubinin - Astakhov ( DA) equation. From simulated isotherms described by the DA equation, the average micropore diameters were calculated using empirical relationships proposed by different authors and they were compared with those from the BG method.
Resumo:
Glutathione-S-transferase (GST)-Grb2 fusion proteins have been used to identify the potential role of Grb2-binding proteins in platelet activation by the platelet low-affinity IgG receptor, Fc gamma RIIA. Two tyrosine phosphoproteins of 38 and 63 kD bind to the SH2 domain of Grb2 following Fc gamma RIIA stimulation of platelets. Both are located in the particulate fraction following platelet activation and are also able to bind to a GST-construct containing the SH2 and SH3 domains of phospholipase C gamma 1. p38 also forms a complex with the tyrosine kinase csk in stimulated cells and is a substrate for the kinase. The SH3 domains of Grb2 form a stable complex with SOS1 and two proteins of 75 kD and 120 kD, which undergo tyrosine phosphorylation in Fc gamma RIIA stimulated cells. The 75-kD protein is recognized by antibodies to SLP-76, which has recently been isolated from T cells and sequenced. Tyrosine phosphorylation of p38 and p63 is also observed in platelets stimulated by the tyrosine kinase-linked receptor agonist collagen and by the G protein-coupled receptor agonist thrombin, although phosphorylation of SLP-76 is only observed in collagen-stimulated platelets. p38 and p63 may provide a docking site for Grb2, thereby linking Grb2 SH3-binding proteins SOS1, SLP-76, and p120 to downstream signalling events.
Resumo:
Archived soils could represent a valuable resource for the spatio-temporal inventory of soil carbon stability. However, archived soils are usually air-dried before storage and the impact of a drying pretreatment on physically and chemically-defined C fractions has not yet been fully assessed. Through the comparison of field-moist and corresponding air-dried (at 25oC for 2 weeks) forest soil samples, we examined the effect of air-drying on: a) the quantity and the quality of cold- (CWEC) and hot-water (HWEC) extractable C and b) the concentration of C in physically isolated fractions (free- and intra-aggregate light and organo-mineral). Soil samples were collected from the organic (O) and mineral (A and B) horizons of three different forest soils from southeastern England: (i) Cambisol under Pine (Pinus nigra); (ii) Cambisol under Beech (Fagus sylvatica) and (iii) Gleysol under oak (Quercus robur). CWEC concentrations for dry samples were up to 2 times greater than for corresponding field moist samples and had significantly (p < 0.001) higher phenolic content. However, the effect of drying pretreatment on HWEC, its phenolic content was not significant (p > 0.05) for most samples. Dried soils had significantly (p < 0.001) higher concentrations of free light-C while having lower concentrations of intra-aggregate-C when compared to moist samples (p < 0.001). However, fine silt and clay fractions were not significantly affected by the drying pretreatment (p=0.789). Therefore, based on the results obtained from gleysol and cambisol forest soils studied here, C contents in hot-water extractions and fine particle size physical fractions (< 25µm) seem to be robust measurements for evaluating C fractions in dried stored forest soils. Further soil types should be tested to evaluate the wider generality of these findings.
Resumo:
Long-term monitoring of surface water quality has shown increasing concentrations of Dissolved Organic Carbon (DOC) across a large part of the Northern Hemisphere. Several drivers have been implicated including climate change, land management change, nitrogen and sulphur deposition and CO2 enrichment. Analysis of stream water data, supported by evidence from laboratory studies, indicates that an effect of declining sulphur deposition on catchment soil chemistry is likely to be the primary mechanism, but there are relatively few long term soil water chemistry records in the UK with which to investigate this, and other, hypotheses directly. In this paper, we assess temporal relationships between soil solution chemistry and parameters that have been argued to regulate DOC production and, using a unique set of co-located measurements of weather and bulk deposition and soil solution chemistry provided by the UK Environmental Change Network and the Intensive Forest Monitoring Level II Network . We used statistical non-linear trend analysis to investigate these relationships at 5 forested and 4 non-forested sites from 1993 to 2011. Most trends in soil solution DOC concentration were found to be non-linear. Significant increases in DOC occurred mostly prior to 2005. The magnitude and sign of the trends was associated qualitatively with changes in acid deposition, the presence/absence of a forest canopy, soil depth and soil properties. The strongest increases in DOC were seen in acidic forest soils and were most clearly linked to declining anthropogenic acid deposition, while DOC trends at some sites with westerly locations appeared to have been influenced by shorter-term hydrological variation. The results indicate that widespread DOC increases in surface waters observed elsewhere, are most likely dominated by enhanced mobilization of DOC in surficial organic horizons, rather than changes in the soil water chemistry of deeper horizons. While trends in DOC concentrations in surface horizons have flattened out in recent years, further increases may be expected as soil chemistry continues to adjust to declining inputs of acidity.
Resumo:
Platelets are small blood cells vital for hemostasis. Following vascular damage, platelets adhere to collagens and activate, forming a thrombus that plugs the wound and prevents blood loss. Stimulation of the platelet collagen receptor glycoprotein VI (GPVI) allows recruitment of proteins to receptor-proximal signaling complexes on the inner-leaflet of the plasma membrane. These proteins are often present at low concentrations; therefore, signaling-complex characterization using mass spectrometry is limited due to high sample complexity. We describe a method that facilitates detection of signaling proteins concentrated on membranes. Peripheral membrane proteins (reversibly associated with membranes) were eluted from human platelets with alkaline sodium carbonate. Liquid-phase isoelectric focusing and gel electrophoresis were used to identify proteins that changed in levels on membranes from GPVI-stimulated platelets. Immunoblot analysis verified protein recruitment to platelet membranes and subsequent protein phosphorylation was preserved. Hsp47, a collagen binding protein, was among the proteins identified and found to be exposed on the surface of GPVI-activated platelets. Inhibition of Hsp47 abolished platelet aggregation in response to collagen, while only partially reducing aggregation in response to other platelet agonists. We propose that Hsp47 may therefore play a role in hemostasis and thrombosis.
Resumo:
Spontaneous mutants of Rhizobium leguminosarum bv. viciae 3841 were isolated that grow faster than the wild type on gamma-aminobutyric acid (GABA) as the sole carbon and nitrogen source. These strains (RU1736 and RU1816) have frameshift mutations (gtsR101 and gtsR102, respectively) in a GntR-type regulator (GtsR) that result in a high rate of constitutive GABA transport. Tn5 mutagenesis and quantitative reverse transcription-PCR showed that GstR regulates expression of a large operon (pRL100242 to pRL100252) on the Sym plasmid that is required for GABA uptake. An ABC transport system, GtsABCD (for GABA transport system) (pRL100248-51), of the spermidine/putrescine family is part of this operon. GtsA is a periplasmic binding protein, GtsB and GtsC are integral membrane proteins, and GtsD is an ATP-binding subunit. Expression of gtsABCD from a lacZ promoter confirmed that it alone is responsible for high rates of GABA transport, enabling rapid growth of strain 3841 on GABA. Gts transports open-chain compounds with four or five carbon atoms with carboxyl and amino groups at, or close to, opposite termini. However, aromatic compounds with similar spacing between carboxyl and amino groups are excellent inhibitors of GABA uptake so they may also be transported. In addition to the ABC transporter, the operon contains two putative mono-oxygenases, a putative hydrolase, a putative aldehyde dehydrogenase, and a succinate semialdehyde dehydrogenase. This suggests the operon may be involved in the transport and breakdown of a more complex precursor to GABA. Gts is not expressed in pea bacteroids, and gtsB mutants are unaltered in their symbiotic phenotype, suggesting that Bra is the only GABA transport system available for amino acid cycling.
Resumo:
Rhizobium leguminosarum bv. viciae 3841 contains six putative quaternary ammonium transporters (Qat), of the ABC family. Qat6 was strongly induced by hyperosmosis although the solute transported was not identified. All six systems were induced by the quaternary amines choline and glycine betaine. It was confirmed by microarray analysis of the genome that pRL100079-83 (qat6) is the most strongly upregulated transport system under osmotic stress, although other transporters and 104 genes are more than threefold upregulated. A range of quaternary ammonium compounds were tested but all failed to improve growth of strain 3841 under hyperosmotic stress. One Qat system (gbcXWV) was induced 20-fold by glycine betaine and choline and a Tn5::gbcW mutant was severely impaired for both transport and growth on these compounds, demonstrating that it is the principal system for their use as carbon and nitrogen sources. It transports glycine betaine and choline with a high affinity (apparent K-m, 168 and 294 nM, respectively).
Resumo:
Using grand canonical Monte Carlo simulation we show, for the first time, the influence of the carbon porosity and surface oxidation on the parameters of the Dubinin-Astakhov (DA) adsorption isotherm equation. We conclude that upon carbon surface oxidation, the adsorption decreases for all carbons studied. Moreover, the parameters of the DA model depend on the number of surface oxygen groups. That is why in the case of carbons containing surface polar groups, SF(6) adsorption isotherm data cannot be used for characterization of the porosity.
Resumo:
Using the plausible model of activated carbon proposed by Harris and co-workers and grand canonical Monte Carlo simulations, we study the applicability of standard methods for describing adsorption data on microporous carbons widely used in adsorption science. Two carbon structures are studied, one with a small distribution of micropores in the range up to 1 nm, and the other with micropores covering a wide range of porosity. For both structures, adsorption isotherms of noble gases (from Ne to Xe), carbon tetrachloride and benzene are simulated. The data obtained are considered in terms of Dubinin-Radushkevich plots. Moreover, for benzene and carbon tetrachloride the temperature invariance of the characteristic curve is also studied. We show that using simulated data some empirical relationships obtained from experiment can be successfully recovered. Next we test the applicability of Dubinin's related models including the Dubinin-Izotova, Dubinin-Radushkevich-Stoeckli, and Jaroniec-Choma equations. The results obtained demonstrate the limits and applications of the models studied in the field of carbon porosity characterization.
Resumo:
The addition of small quantities of nanoparticles to conventional and sustainable thermoplastics leads to property enhancements with considerable potential in many areas of applications including food packaging 1, lightweight composites and high performance materials 2. In the case of sustainable polymers 3, the addition of nanoparticles may well sufficiently enhance properties such that the portfolio of possible applications is greatly increased. Most engineered nanoparticles are highly stable and these exist as nanoparticles prior to compounding with the polymer resin. They remain as nanoparticles during the active use of the packaging material as well as in the subsequent waste and recycling streams. It is also possible to construct the nanoparticles within the polymer films during processing from organic compounds selected to present minimal or no potential health hazards 4. In both cases the characterisation of the resultant nanostructured polymers presents a number of challenges. Foremost amongst these are the coupled challenges of the nanoscale of the particles and the low fraction present in the polymer matrix. Very low fractions of nanoparticles are only effective if the dispersion of the particles is good. This continues to be an issue in the process engineering but of course bad dispersion is much easier to see than good dispersion. In this presentation we show the merits of a combined scattering (neutron and x-ray) and microscopy (SEM, TEM, AFM) approach. We explore this methodology using rod like, plate like and spheroidal particles including metallic particles, plate-like and rod-like clay dispersions and nanoscale particles based on carbon such as nanotubes and graphene flakes. We will draw on a range of material systems, many explored in partnership with other members of Napolynet. The value of adding nanoscale particles is that the scale matches the scale of the structure in the polymer matrix. Although this can lead to difficulties in separating the effects in scattering experiments, the result in morphological studies means that both the nanoparticles and the polymer morphology are revealed.