67 resultados para Chaotic synchronization
em CentAUR: Central Archive University of Reading - UK
Resumo:
We unfold a profound relationship between the dynamics of finite-size perturbations in spatially extended chaotic systems and the universality class of Kardar-Parisi-Zhang (KPZ). We show how this relationship can be exploited to obtain a complete theoretical description of the bred vectors dynamics. The existence of characteristic length/time scales, the spatial extent of spatial correlations and how to time it, and the role of the breeding amplitude are all analyzed in the light of our theory. Implications to weather forecasting based on ensembles of initial conditions are also discussed.
Resumo:
We agree with Duckrow and Albano [Phys. Rev. E 67, 063901 (2003)] and Quian Quiroga [Phys. Rev. E 67, 063902 (2003)] that mutual information (MI) is a useful measure of dependence for electroencephalogram (EEG) data, but we show that the improvement seen in the performance of MI on extracting dependence trends from EEG is more dependent on the type of MI estimator rather than any embedding technique used. In an independent study we conducted in search for an optimal MI estimator, and in particular for EEG applications, we examined the performance of a number of MI estimators on the data set used by Quian Quiroga in their original study, where the performance of different dependence measures on real data was investigated [Phys. Rev. E 65, 041903 (2002)]. We show that for EEG applications the best performance among the investigated estimators is achieved by k-nearest neighbors, which supports the conjecture by Quian Quiroga in Phys. Rev. E 67, 063902 (2003) that the nearest neighbor estimator is the most precise method for estimating MI.
Resumo:
Significant performance gain can potentially be achieved by employing distributed space-time block coding (D-STBC) in ad hoc or mesh networks. So far, however, most research on D-STBC has assumed that cooperative relay nodes are perfectly synchronized. Considering the difficulty in meeting such an assumption in many practical systems, this paper proposes a simple and near-optimum detection scheme for the case of two relay nodes, which proves to be able to handle far greater timing misalignment than the conventional STBC detector.
Resumo:
Little has so far been reported on the performance of the near-far resistant CDMA detectors in the presence of the synchronization errors. Starting with the general mathematical model of matched filters, this paper examines the effects of three classes of synchronization errors (i.e. time-delay errors, carrier phase errors, and carrier frequency errors) on the performance (bit error rate and near-far resistance) of an emerging type of near-far resistant coherent DS/SSMA detectors, i.e. the linear decorrelating detector (LDD). For comparison, the corresponding results for the conventional detector are also presented. It is shown that the LDD can still maintain a considerable performance advantage over the conventional detector even when some synchronization errors exist. Finally, several computer simulations are carried out to verify the theoretical conclusions.
Resumo:
Exponential spectra are found to characterize variability of the Northern Annular Mode (NAM) for periods less than 36 days. This corresponds to the observed rounding of the autocorrelation function at lags of a few days. The characteristic persistence timescales during winter and summer is found to be ∼5 days for these high frequencies. Beyond periods of 36 days the characteristic decorrelation timescale is ∼20 days during winter and ∼6 days in summer. We conclude that the NAM cannot be described by autoregressive models for high frequencies; the spectra are more consistent with low-order chaos. We also propose that the NAM exhibits regime behaviour, however the nature of this has yet to be identified.
Resumo:
Burst timing synchronisation is maintained in a digital data decoder during multiple burst reception in a TDMA system. The data within a multiple burst are streamed into memory storage and data corresponding to a first burst in the series of bursts are selected on the basis of a current timing estimate derived from a synchronisation burst. Selections of data corresponding to other bursts in the series of bursts are modified in accordance with updated timing estimates derived from previously processed bursts.
Resumo:
Proactive motion in hand tracking and in finger bending, in which the body motion occurs prior to the reference signal, was reported by the preceding researchers when the target signals were shown to the subjects at relatively high speed or high frequencies. These phenomena indicate that the human sensory-motor system tends to choose an anticipatory mode rather than a reactive mode, when the target motion is relatively fast. The present research was undertaken to study what kind of mode appears in the sensory-motor system when two persons were asked to track the hand position of the partner with each other at various mean tracking frequency. The experimental results showed a transition from a mutual error-correction mode to a synchronization mode occurred in the same region of the tracking frequency with that of the transition from a reactive error-correction mode to a proactive anticipatory mode in the mechanical target tracking experiments. Present research indicated that synchronization of body motion occurred only when both of the pair subjects operated in a proactive anticipatory mode. We also presented mathematical models to explain the behavior of the error-correction mode and the synchronization mode.
Resumo:
Many studies have reported long-range synchronization of neuronal activity between brain areas, in particular in the beta and gamma bands with frequencies in the range of 14–30 and 40–80 Hz, respectively. Several studies have reported synchrony with zero phase lag, which is remarkable considering the synaptic and conduction delays inherent in the connections between distant brain areas. This result has led to many speculations about the possible functional role of zero-lag synchrony, such as for neuronal communication, attention, memory, and feature binding. However, recent studies using recordings of single-unit activity and local field potentials report that neuronal synchronization may occur with non-zero phase lags. This raises the questions whether zero-lag synchrony can occur in the brain and, if so, under which conditions. We used analytical methods and computer simulations to investigate which connectivity between neuronal populations allows or prohibits zero-lag synchrony. We did so for a model where two oscillators interact via a relay oscillator. Analytical results and computer simulations were obtained for both type I Mirollo–Strogatz neurons and type II Hodgkin–Huxley neurons. We have investigated the dynamics of the model for various types of synaptic coupling and importantly considered the potential impact of Spike-Timing Dependent Plasticity (STDP) and its learning window. We confirm previous results that zero-lag synchrony can be achieved in this configuration. This is much easier to achieve with Hodgkin–Huxley neurons, which have a biphasic phase response curve, than for type I neurons. STDP facilitates zero-lag synchrony as it adjusts the synaptic strengths such that zero-lag synchrony is feasible for a much larger range of parameters than without STDP.
Resumo:
We present evidence that large-scale spatial coherence of 40 Hz oscillations can emerge dynamically in a cortical mean field theory. The simulated synchronization time scale is about 150 ms, which compares well with experimental data on large-scale integration during cognitive tasks. The same model has previously provided consistent descriptions of the human EEG at rest, with tranquilizers, under anesthesia, and during anesthetic-induced epileptic seizures. The emergence of coherent gamma band activity is brought about by changing just one physiological parameter until cortex becomes marginally unstable for a small range of wavelengths. This suggests for future study a model of dynamic computation at the edge of cortical stability.
Resumo:
The relevance of chaotic advection to stratospheric mixing and transport is addressed in the context of (i) a numerical model of forced shallow-water flow on the sphere, and (ii) a middle-atmosphere general circulation model. It is argued that chaotic advection applies to both these models if there is suitable large-scale spatial structure in the velocity field and if the velocity field is temporally quasi-regular. This spatial structure is manifested in the form of “cat’s eyes” in the surf zone, such as are commonly seen in numerical simulations of Rossby wave critical layers; by analogy with the heteroclinic structure of a temporally aperiodic chaotic system the cat’s eyes may be thought of as an “organizing structure” for mixing and transport in the surf zone. When this organizing structure exists, Eulerian and Lagrangian autocorrelations of the velocity derivatives indicate that velocity derivatives decorrelate more rapidly along particle trajectories than at fixed spatial locations (i.e., the velocity field is temporally quasi-regular). This phenomenon is referred to as Lagrangian random strain.
Resumo:
Statistical diagnostics of mixing and transport are computed for a numerical model of forced shallow-water flow on the sphere and a middle-atmosphere general circulation model. In particular, particle dispersion statistics, transport fluxes, Liapunov exponents (probability density functions and ensemble averages), and tracer concentration statistics are considered. It is shown that the behavior of the diagnostics is in accord with that of kinematic chaotic advection models so long as stochasticity is sufficiently weak. Comparisons with random-strain theory are made.
Resumo:
A simple, dynamically consistent model of mixing and transport in Rossby-wave critical layers is obtained from the well-known Stewartson–Warn–Warn (SWW) solution of Rossby-wave critical-layer theory. The SWW solution is thought to be a useful conceptual model of Rossby-wave breaking in the stratosphere. Chaotic advection in the model is a consequence of the interaction between a stationary and a transient Rossby wave. Mixing and transport are characterized separately with a number of quantitative diagnostics (e.g. mean-square dispersion, lobe dynamics, and spectral moments), and with particular emphasis on the dynamics of the tracer field itself. The parameter dependences of the diagnostics are examined: transport tends to increase monotonically with increasing perturbation amplitude whereas mixing does not. The robustness of the results is investigated by stochastically perturbing the transient-wave phase speed. The two-wave chaotic advection model is contrasted with a stochastic single-wave model. It is shown that the effects of chaotic advection cannot be captured by stochasticity alone.
Resumo:
We performed mutual tapping experiments between two humans to investigate the conditions required for synchronized motion. A transition from an alternative mode to a synchronization mode was discovered under the same conditions when a subject changed from a reactive mode to an anticipation mode in single tapping experiments. Experimental results suggest that the cycle time for each tapping motion is tuned by a proportional control that is based on synchronization errors and cycle time errors. As the tapping frequency increases, the mathematical model based on the feedback control in the sensory-motor closed loop predicts a discrete mode transition as the gain factors of the proportional control decease. The conditions of the synchronization were shown as a consequence of the coupled dynamics based on the subsequent feedback loop in the sensory-motor system.
Resumo:
We consider a scattering problem for a nonlinear disordered lattice layer governed by the discrete nonlinear Schrodinger equation. The linear state with exponentially small transparency, due to the Anderson localization, is followed for an increasing nonlinearity, until it is destroyed via a bifurcation. The critical nonlinearity is shown to decay with the lattice length as a power law. We demonstrate that in the chaotic regimes beyond the bifurcation the field is delocalized and this leads to a drastic increase of transparency. Copyright (C) EPLA, 2008
Resumo:
In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the cho- sen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan–Yorke dimension of the attractor. Preliminary numer- ical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.