4 resultados para Change-points
em CentAUR: Central Archive University of Reading - UK
Resumo:
Seasonal variations in the stable isotopic composition of snow and meltwater were investigated in a sub-arctic, mountainous, but non-glacial, catchment at Okstindan in northern Norway based on analyses of delta(18)O and deltaD. Samples were collected during four field periods (August 1998; April 1999; June 1999 and August 1999) at three sites lying on an altitudinal transect (740-970 m a.s.l.). Snowpack data display an increase in the mean values of delta(18)O (increasing from a mean value of - 13.51 to - 11.49% between April and August), as well as a decrease in variability through the melt period. Comparison with a regional meteoric water line indicates that the slope of the delta(18)O - deltaD line for the snowpacks decreases over the same period, dropping from 7.49 to approximately 6.2. This change points to the role of evaporation in snowpack ablation and is confirmed by the vertical profile of deuterium excess. Snowpack seepage data, although limited, also suggest reduced values of deltaD, as might be associated with local evaporation during meltwater generation. In general, meltwaters were depleted in delta(18)O relative to the source snowpack at the peak of the melt (June), but later in the year (August) the difference between the two was not statistically significant. The diurnal pattern of isotopic composition indicates that the most depleted meltwaters coincide with the peak in temperature and, hence, meltwater production.
Resumo:
Holocene silts (salt marshes) and highest intertidal-supratidal peats are superbly exposed on a 15 kin coastal transect which reveals two laterally extensive units of annually banded silts (Beds 3, 7) associated with three transgressive-regressive silt-peat cycles (early sixth-early fourth millennium BC). Bed 3 in places is concordantly and gradationally related to peats above and below, but in others transgresses older strata. Bed 7 also grades up into peat, but everywhere overlies a discordance. The banding in Bed 3 at three main and two minor sites was resolved and characterized texturally at high-resolution (2.5/5 mm contiguous slices) using laser granulometry (LS230 with PIDS) and a comprehensive scheme of data-assessment. Most of Bed 3 formed very rapidly, at peak values of several tens of millimetres annually, in accordance with modelled effects of sea-level fluctuations on mature marshes (bed concordant and gradational) and on marshes growing up after coastal erosion and retreat (bed with discordant base). Using data from the modern Severn Estuary, the textural contrast within bands, and its variation between bands, points to a variable but overall milder mid-Holocene climate than today. The inter-annual variability affected marsh dynamics, as shown by the behaviour of the finely divided plant tissues present. Given local calibration, the methodology is applicable to other tidal systems with banded silts in Britain and mainland northwest Europe. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Climate has been changing in the last fifty years in China and will continue to change regardless any efforts for mitigation. Agriculture is a climate-dependent activity and highly sensitive to climate changes and climate variability. Understanding the interactions between climate change and agricultural production is essential for society stable development of China. The first mission is to fully understand how to predict future climate and link it with agriculture production system. In this paper, recent studies both domestic and international are reviewed in order to provide an overall image of the progress in climate change researches. The methods for climate change scenarios construction are introduced. The pivotal techniques linking crop model and climate models are systematically assessed and climate change impacts on Chinese crops yield among model results are summarized. The study found that simulated productions of grain crop inherit uncertainty from using different climate models, emission scenarios and the crops simulation models. Moreover, studies have different spatial resolutions, and methods for general circulation model (GCM) downscaling which increase the uncertainty for regional impacts assessment. However, the magnitude of change in crop production due to climate change (at 700 ppm CO2 eq correct) appears within ±10% for China in these assessments. In most literatures, the three cereal crop yields showed decline under climate change scenarios and only wheat in some region showed increase. Finally, the paper points out several gaps in current researches which need more studies to shorten the distance for objective recognizing the impacts of climate change on crops. The uncertainty for crop yield projection is associated with climate change scenarios, CO2 fertilization effects and adaptation options. Therefore, more studies on the fields such as free air CO2 enrichment experiment and practical adaptations implemented need to be carried out
Resumo:
Stable isotope analysis of leaf waxes in a sediment core from Laguna La Gaiba, a shallow lake located at the Bolivian margin of the Pantanal wetlands, provides new perspective on vegetation and climate change in the lowland interior tropics of South America over the past 40,000 years. The carbon isotopic compositions (δ13C) of long-chain n-alkanes reveal large shifts between C3-and C4-dominated vegetation communities since the last glacial period, consistent with landscape reconstructions generated with pollen data from the same sediment core. Leaf wax δ13C values during the last glacial period reflect an open landscape composed of C4grasses and C3herbs from 41–20ka. A peak in C4abundance during the Last Glacial Maximum (LGM, ∼21ka) suggests drier or more seasonal conditions relative to the earlier glacial period, while the development of a C3-dominated forest community after 20 ka points to increased humidity during the last deglaciation. Within the Holocene, large changes in the abundance of C4 vegetation indicate a transition from drier or more seasonal conditions during the early/mid-Holocene to wetter conditions in the late Holocene coincident with increasing austral summer insolation. Strong negative correlations between leaf wax δ13C and δD values over the entire record indicate that the majority of variability in leaf wax δD at this site can be explained by variability in the magnitude of biosynthetic fractionation by different vegetation types rather than changes in meteoric water δD signatures. However, positive δD deviations from the observed δ13C–δD trends are consistent with more enriched source water and drier or more seasonal conditions during the early/mid-Holocene and LGM. Overall, our record adds to evidence of varying influence of glacial boundary conditions and orbital forcing on South American Summer Monsoon precipitation in different regions of the South American tropics. Moreover, the relationships between leaf wax stable isotopes and pollen data observed at this site underscore the complementary nature of pollen and leaf wax δ13C data for reconstructing past vegetation changes and the potentially large effects of such changes on leaf wax δD signatures.