21 resultados para Cervical lateral mass - Technique to insert a screw
em CentAUR: Central Archive University of Reading - UK
Resumo:
The simulation and development work that has been undertaken to produce a signal equaliser used to improve the data rates from oil well logging instruments is presented. The instruments are lowered into the drill bore hole suspended by a cable which has poor electrical characteristics. The equaliser described in the paper corrects for the distortions that occur from the cable (dispersion and attenuation) with the result that the instrument can send data at 100 K.bits/second down its own suspension cable of 12 Km in length. The use of simulation techniques and tools were invaluable in generating a model for the distortions and proved to be a useful tool when site testing was not available.
Resumo:
The real time hardware architecture of a deterministic video echo canceller (deghoster) system is presented. The deghoster is capable of calculating all the multipath channel distortion characteristics from terrestrial and cable television in one single pass while performing real time video in-line ghost cancellation. The results from the actual system are also presented in this paper.
Resumo:
We present a new technique for correcting errors in radar estimates of rainfall due to attenuation which is based on the fact that any attenuating target will itself emit, and that this emission can be detected by the increased noise level in the radar receiver. The technique is being installed on the UK operational network, and for the first time, allows radome attenuation to be monitored using the increased noise at the higher beam elevations. This attenuation has a large azimuthal dependence but for an old radome can be up to 4 dB for rainfall rates of just 2–4 mm/h. This effect has been neglected in the past, but may be responsible for significant errors in rainfall estimates and in radar calibrations using gauges. The extra noise at low radar elevations provides an estimate of the total path integrated attenuation of nearby storms; this total attenuation can then be used as a constraint for gate-by-gate or polarimetric correction algorithms.
Resumo:
The slow advective-timescale dynamics of the atmosphere and oceans is referred to as balanced dynamics. An extensive body of theory for disturbances to basic flows exists for the quasi-geostrophic (QG) model of balanced dynamics, based on wave-activity invariants and nonlinear stability theorems associated with exact symmetry-based conservation laws. In attempting to extend this theory to the semi-geostrophic (SG) model of balanced dynamics, Kushner & Shepherd discovered lateral boundary contributions to the SG wave-activity invariants which are not present in the QG theory, and which affect the stability theorems. However, because of technical difficulties associated with the SG model, the analysis of Kushner & Shepherd was not fully nonlinear. This paper examines the issue of lateral boundary contributions to wave-activity invariants for balanced dynamics in the context of Salmon's nearly geostrophic model of rotating shallow-water flow. Salmon's model has certain similarities with the SG model, but also has important differences that allow the present analysis to be carried to finite amplitude. In the process, the way in which constraints produce boundary contributions to wave-activity invariants, and additional conditions in the associated stability theorems, is clarified. It is shown that Salmon's model possesses two kinds of stability theorems: an analogue of Ripa's small-amplitude stability theorem for shallow-water flow, and a finite-amplitude analogue of Kushner & Shepherd's SG stability theorem in which the ‘subsonic’ condition of Ripa's theorem is replaced by a condition that the flow be cyclonic along lateral boundaries. As with the SG theorem, this last condition has a simple physical interpretation involving the coastal Kelvin waves that exist in both models. Salmon's model has recently emerged as an important prototype for constrained Hamiltonian balanced models. The extent to which the present analysis applies to this general class of models is discussed.
Resumo:
Schools have a legal duty to make reasonable adjustments for disabled pupils who experience barriers to learning. Inclusive approaches to data collection ensure that the needs of all children who are struggling are not overlooked. However, it is important that the methods promote sustained reflection on the part of all children, do not inadvertently accentuate differences between pupils, and do not allow individual needs to go unrecognized. This paper examines more closely the processes involved in using Nominal Group Technique to collect the views of children with and without a disability on the difficulties experienced in school. Data were collected on the process as well as the outcomes of using this technique to examine how pupil views are transformed from the individual to the collective, a process that involves making the private, public. Contrasts are drawn with questionnaire data, another method of data collection favoured by teachers. Although more time-efficient this can produce unclear and cursory responses. The views that surface from pupils need also to be seen within the context of the ways in which schools customize the data collection process and the ways in which the format and organization of the activity impact on the responses and responsiveness of the pupils.
Resumo:
A method is proposed to determine the extent of degradation in the rumen involving a two-stage mathematical modeling process. In the first stage, a statistical model shifts (or maps) the gas accumulation profile obtained using a fecal inoculum to a ruminal gas profile. Then, a kinetic model determines the extent of degradation in the rumen from the shifted profile. The kinetic model is presented as a generalized mathematical function, allowing any one of a number of alternative equation forms to be selected. This method might allow the gas production technique to become an approach for determining extent of degradation in the rumen, decreasing the need for surgically modified animals while still maintaining the link with the animal. Further research is needed before the proposed methodology can be used as a standard method across a range of feeds.
Resumo:
Regulated irrigation has the potential to improve crop quality in woody ornamentals by reducing excessive vigour and promoting a more compact habit. This research aimed to compare the effectiveness and the mode of action of two techniques, regulated deficit irrigation (RDI) and partial root drying (PRD), when applied to container-grown ornamentals through drip irrigation. Results showed that RDI and PRD reduced growth in Cotinus coggygria 'Royal Purple', but in Forsythia x intermedia 'Lynwood', significant reductions were recorded only with RDI. Physiological measurements in Forsythia indicated that reductions in stomatal conductance (g(s)) occurred in both treatments, but those in the RDI tended to be more persistent. Reduced g(s) in PRD was consistent with the concept that chemical signals from the root can regulate stomatal aperture alone; however, the data also suggested that optimising the growth reduction required a moderate degree of shoot water deficit (i.e. a hydraulic signal to be imposed). As RDI was associated with tissue water deficit, it was used in a second experiment to determine the potential of this technique to precondition container-grown plants against subsequent drought stress (e.g. during retail stages or after planting out). Speed of acclimation would be important in a commercial context, and the results demonstrated that both slow and rapid imposition of RDI enabled Forsythia plants to acclimate against later drought events. This article discusses the potential to both improve ornamental plant quality and enhance tolerance to subsequent adverse conditions through controlled, regulated irrigation.
Resumo:
In this paper, we apply one-list capture-recapture models to estimate the number of scrapie-affected holdings in Great Britain. We applied this technique to the Compulsory Scrapie Flocks Scheme dataset where cases from all the surveillance sources monitoring the presence of scrapie in Great Britain, the abattoir survey, the fallen stock survey and the statutory reporting of clinical cases, are gathered. Consequently, the estimates of prevalence obtained from this scheme should be comprehensive and cover all the different presentations of the disease captured individually by the surveillance sources. Two estimators were applied under the one-list approach: the Zelterman estimator and Chao's lower bound estimator. Our results could only inform with confidence the scrapie-affected holding population with clinical disease; this moved around the figure of 350 holdings in Great Britain for the period under study, April 2005-April 2006. Our models allowed the stratification by surveillance source and the input of covariate information, holding size and country of origin. None of the covariates appear to inform the model significantly. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
The identification and visualization of clusters formed by motor unit action potentials (MUAPs) is an essential step in investigations seeking to explain the control of the neuromuscular system. This work introduces the generative topographic mapping (GTM), a novel machine learning tool, for clustering of MUAPs, and also it extends the GTM technique to provide a way of visualizing MUAPs. The performance of GTM was compared to that of three other clustering methods: the self-organizing map (SOM), a Gaussian mixture model (GMM), and the neural-gas network (NGN). The results, based on the study of experimental MUAPs, showed that the rate of success of both GTM and SOM outperformed that of GMM and NGN, and also that GTM may in practice be used as a principled alternative to the SOM in the study of MUAPs. A visualization tool, which we called GTM grid, was devised for visualization of MUAPs lying in a high-dimensional space. The visualization provided by the GTM grid was compared to that obtained from principal component analysis (PCA). (c) 2005 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Mediterranean species are popular landscape plants in the UK and well suited to the predicted climate change scenarios of hotter, drier summers. What is less clear is how these species will respond to the more unpredictable rainfall patterns also anticipated, where soil water-logging may become more prevalent, especially in urban environments where soil sealing can restrict drainage. Pot experiments on flooding of four Mediterranean species (Cistus × hybridus, Lavandula angustifolia ‘Munstead’, Salvia officinalis and Stachys byzantina) showed that the effects of waterlogging were only severe when the temperature was high and flooding prolonged. All plants survived the flooding in winter, but during the summer a 17-day flood resulted in the death of 30-40% of the Salvia officinalis and Cistus × hybridus. To examine the response of roots to oxygen deprivation over a range of conditions from total absence of oxygen (anoxia), low oxygen (hypoxia) and full aeration, rooted cuttings of Salvia officinalis were grown in a hydroponic-based system and mixtures of oxygen and nitrogen gases bubbled through the media. Anoxia was found to reduce root development dramatically. When the plants were subjected to a period of hypoxia they responded by increasing the production of lateral roots close to the surface thus enabling them to acclimate to subsequent anoxia. This greatly increased their chances of survival.
Resumo:
The proteome of Salmonella enterica serovar Typhimurium was characterized by 2-dimensional HPLC mass spectrometry to provide a platform for subsequent proteomic investigations of low level multiple antibiotic resistance (MAR). Bacteria (2.15 +/- 0.23 x 10(10) cfu; mean +/- s.d.) were harvested from liquid culture and proteins differentially fractionated, on the basis of solubility, into preparations representative of the cytosol, cell envelope and outer membrane proteins (OMPs). These preparations were digested by treatment with trypsin and peptides separated into fractions (n = 20) by strong cation exchange chromatography (SCX). Tryptic peptides in each SCX fraction were further separated by reversed-phase chromatography and detected by mass spectrometry. Peptides were assigned to proteins and consensus rank listings compiled using SEQUEST. A total of 816 +/- 11 individual proteins were identified which included 371 +/- 33, 565 +/- 15 and 262 +/- 5 from the cytosolic, cell envelope and OMP preparations, respectively. A significant correlation was observed (r(2) = 0.62 +/- 0.10; P < 0.0001) between consensus rank position for duplicate cell preparations and an average of 74 +/- 5% of proteins were common to both replicates. A total of 34 outer membrane proteins were detected, 20 of these from the OMP preparation. A range of proteins (n = 20) previously associated with the mar locus in E. coli were also found including the key MAR effectors AcrA, TolC and OmpF.
Resumo:
Spontaneous activity of the brain at rest frequently has been considered a mere backdrop to the salient activity evoked by external stimuli or tasks. However, the resting state of the brain consumes most of its energy budget, which suggests a far more important role. An intriguing hint comes from experimental observations of spontaneous activity patterns, which closely resemble those evoked by visual stimulation with oriented gratings, except that cortex appeared to cycle between different orientation maps. Moreover, patterns similar to those evoked by the behaviorally most relevant horizontal and vertical orientations occurred more often than those corresponding to oblique angles. We hypothesize that this kind of spontaneous activity develops at least to some degree autonomously, providing a dynamical reservoir of cortical states, which are then associated with visual stimuli through learning. To test this hypothesis, we use a biologically inspired neural mass model to simulate a patch of cat visual cortex. Spontaneous transitions between orientation states were induced by modest modifications of the neural connectivity, establishing a stable heteroclinic channel. Significantly, the experimentally observed greater frequency of states representing the behaviorally important horizontal and vertical orientations emerged spontaneously from these simulations. We then applied bar-shaped inputs to the model cortex and used Hebbian learning rules to modify the corresponding synaptic strengths. After unsupervised learning, different bar inputs reliably and exclusively evoked their associated orientation state; whereas in the absence of input, the model cortex resumed its spontaneous cycling. We conclude that the experimentally observed similarities between spontaneous and evoked activity in visual cortex can be explained as the outcome of a learning process that associates external stimuli with a preexisting reservoir of autonomous neural activity states. Our findings hence demonstrate how cortical connectivity can link the maintenance of spontaneous activity in the brain mechanistically to its core cognitive functions.
Resumo:
The Richards equation has been widely used for simulating soil water movement. However, the take-up of agro-hydrological models using the basic theory of soil water flow for optimizing irrigation, fertilizer and pesticide practices is still low. This is partly due to the difficulties in obtaining accurate values for soil hydraulic properties at a field scale. Here, we use an inverse technique to deduce the effective soil hydraulic properties, based on measuring the changes in the distribution of soil water with depth in a fallow field over a long period, subject to natural rainfall and evaporation using a robust micro Genetic Algorithm. A new optimized function was constructed from the soil water contents at different depths, and the soil water at field capacity. The deduced soil water retention curve was approximately parallel but higher than that derived from published pedo-tranfer functions for a given soil pressure head. The water contents calculated from the deduced soil hydraulic properties were in good agreement with the measured values. The reliability of the deduced soil hydraulic properties was tested in reproducing data measured from an independent experiment on the same soil cropped with leek. The calculation of root water uptake took account for both soil water potential and root density distribution. Results show that the predictions of soil water contents at various depths agree fairly well with the measurements, indicating that the inverse analysis is an effective and reliable approach to estimate soil hydraulic properties, and thus permits the simulation of soil water dynamics in both cropped and fallow soils in the field accurately. (C) 2009 Elsevier B.V. All rights reserved.