10 resultados para Cercadors d’ Internet
em CentAUR: Central Archive University of Reading - UK
Resumo:
Classical measures of network connectivity are the number of disjoint paths between a pair of nodes and the size of a minimum cut. For standard graphs, these measures can be computed efficiently using network flow techniques. However, in the Internet on the level of autonomous systems (ASs), referred to as AS-level Internet, routing policies impose restrictions on the paths that traffic can take in the network. These restrictions can be captured by the valley-free path model, which assumes a special directed graph model in which edge types represent relationships between ASs. We consider the adaptation of the classical connectivity measures to the valley-free path model, where it is -hard to compute them. Our first main contribution consists of presenting algorithms for the computation of disjoint paths, and minimum cuts, in the valley-free path model. These algorithms are useful for ASs that want to evaluate different options for selecting upstream providers to improve the robustness of their connection to the Internet. Our second main contribution is an experimental evaluation of our algorithms on four types of directed graph models of the AS-level Internet produced by different inference algorithms. Most importantly, the evaluation shows that our algorithms are able to compute optimal solutions to instances of realistic size of the connectivity problems in the valley-free path model in reasonable time. Furthermore, our experimental results provide information about the characteristics of the directed graph models of the AS-level Internet produced by different inference algorithms. It turns out that (i) we can quantify the difference between the undirected AS-level topology and the directed graph models with respect to fundamental connectivity measures, and (ii) the different inference algorithms yield topologies that are similar with respect to connectivity and are different with respect to the types of paths that exist between pairs of ASs.
Resumo:
Purpose Personalised intervention may have greater potential for reducing the global burden of non-communicable diseases and for promoting better health and wellbeing across the life-span than the conventional “one size fits all” approach. However, the characteristics of individuals interested in personalised nutrition (PN) are unclear. Therefore, the aim of this study was to describe the characteristics of European adults interested in taking part in an internet-based PN study. Methods Individuals from seven European countries (UK, Ireland, Germany, the Netherlands, Spain, Greece and Poland) were invited to participate in the study via the Food4Me website (http://www.food4me.org). Two screening questionnaires were used to collect data on socio-demographic, anthropometric and health characteristics as well as dietary intakes. Results A total of 5662 individuals expressed an interest in the study (mean age 40 ± 12.7; range 15-87 years). Of these 64.6% were female and 96.9% were Caucasian. Overall, 12.9% were smokers and 46.8% reported the presence of a clinically diagnosed disease. Furthermore, 46.9% were overweight or obese and 34.9% were sedentary during leisure time. Assessment of dietary intakes showed that 54.3% of individuals reported consuming at least 5 portions of fruit and vegetables per day, 45.9% consumed more than 3 servings of wholegrains and 37.2% limited their salt intake to less than 5.75g per day. Conclusions Our data indicate that individuals volunteering to participate in an internet-based PN study are broadly representative of the European adult population, most of whom had adequate nutrient intakes but who could benefit from improved dietary choices and greater physical activity. Future use of internet-based PN approaches is thus relevant to a wide target audience.
Resumo:
In e-health intervention studies, there are concerns about the reliability of internet-based, self-reported (SR) data and about the potential for identity fraud. This study introduced and tested a novel procedure for assessing the validity of internet-based, SR identity and validated anthropometric and demographic data via measurements performed face-to-face in a validation study (VS). Participants (n = 140) from seven European countries, participating in the Food4Me intervention study which aimed to test the efficacy of personalised nutrition approaches delivered via the internet, were invited to take part in the VS. Participants visited a research centre in each country within 2 weeks of providing SR data via the internet. Participants received detailed instructions on how to perform each measurement. Individual’s identity was checked visually and by repeated collection and analysis of buccal cell DNA for 33 genetic variants. Validation of identity using genomic information showed perfect concordance between SR and VS. Similar results were found for demographic data (age and sex verification). We observed strong intra-class correlation coefficients between SR and VS for anthropometric data (height 0.990, weight 0.994 and BMI 0.983). However, internet-based SR weight was under-reported (Δ −0.70 kg [−3.6 to 2.1], p < 0.0001) and, therefore, BMI was lower for SR data (Δ −0.29 kg m−2 [−1.5 to 1.0], p < 0.0001). BMI classification was correct in 93 % of cases. We demonstrate the utility of genotype information for detection of possible identity fraud in e-health studies and confirm the reliability of internet-based, SR anthropometric and demographic data collected in the Food4Me study.
Resumo:
An efficient and robust method to measure vitamin D (25-hydroxy vitamin D3 (25(OH)D3) and 25-hydroxy vitamin D2 in dried blood spots (DBS) has been developed and applied in the pan-European multi-centre, internet-based, personalised nutrition intervention study Food4Me. The method includes calibration with blood containing endogenous 25(OH)D3, spotted as DBS and corrected for haematocrit content. The methodology was validated following international standards. The performance characteristics did not reach those of the current gold standard liquid chromatography-MS/MS in plasma for all parameters, but were found to be very suitable for status-level determination under field conditions. DBS sample quality was very high, and 3778 measurements of 25(OH)D3 were obtained from 1465 participants. The study centre and the season within the study centre were very good predictors of 25(OH)D3 levels (P<0·001 for each case). Seasonal effects were modelled by fitting a sine function with a minimum 25(OH)D3 level on 20 January and a maximum on 21 July. The seasonal amplitude varied from centre to centre. The largest difference between winter and summer levels was found in Germany and the smallest in Poland. The model was cross-validated to determine the consistency of the predictions and the performance of the DBS method. The Pearson's correlation between the measured values and the predicted values was r 0·65, and the sd of their differences was 21·2 nmol/l. This includes the analytical variation and the biological variation within subjects. Overall, DBS obtained by unsupervised sampling of the participants at home was a viable methodology for obtaining vitamin D status information in a large nutritional study.
Resumo:
This article presents an experimental scalable message driven IoT and its security architecture based on Decentralized Information Flow Control. The system uses a gateway that exports SoA (REST) interfaces to the internet simplifying external applications whereas uses DIFC and asynchronous messaging within the home environment.