14 resultados para Ceramic oven
em CentAUR: Central Archive University of Reading - UK
Resumo:
Maize silage nutritive quality is routinely determined by near infrared reflectance spectroscopy (NIRS). However, little is known about the impact of sample preparation on the accuracy of the calibration to predict biological traits. A sample population of 48 maize silages representing a wide range of physiological maturities was used in a study to determine the impact of different sample preparation procedures (i.e., drying regimes; the presence or absence of residual moisture; the degree of particle comminution) on resultant NIR prediction statistics. All silages were scanned using a total of 12 combinations of sample pre-treatments. Each sample preparation combination was subjected to three multivariate regression techniques to give a total of 36 predictions per biological trait. Increased sample preparations procedure, relative to scanning the unprocessed whole plant (WP) material, always resulted in a numerical minimisation of model statistics. However, the ability of each of the treatments to significantly minimise the model statistics differed. Particle comminution was the most important factor, oven-drying regime was intermediate, and residual moisture presence was the least important. Models to predict various biological parameters of maize silage will be improved if material is subjected to a high degree of particle comminution (i.e., having been passed through a 1 mm screen) and developed on plant material previously dried at 60 degrees C. The extra effort in terms of time and cost required to remove sample residual moisture cannot be justified. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Intensification of crop production in the mid-hills of Nepal has led to concerns that nitrogen loss by leaching may increase. This study estimated the amount of N leached during two years from rainfed terraces (bari-land) at three locations in Nepal. Maize or upland rice grown in the monsoon season was given either no nutrient inputs or inputs via either nitrogen fertilizer or farmyard manure. Nitrate concentration in soil solution was measured regularly with porous ceramic cup samplers and drainage estimated from a simple soil water balance. Estimated losses of nitrogen by leaching ranged from 0 to 63.5 kg N ha(-1) depending on location and the form of nitrogen applied. Losses from plots receiving no nutrient inputs were generally small (range: 0-35 kg N ha(-1)) and losses from plots where nitrogen was applied as manure (range: 2-41 kg N ha(-1)) were typically half those from plots with nitrogen applied as fertilizer. Losses during the post-monsoon crops of finger millet were small (typically <5% of total loss) although losses from the one site with blackgram were larger (about 13%). The highest concentrations of nitrate in solution were measured early in the season as the monsoon rains began and immediately following fertilizer applications. Leaching losses are likely to be minimised if manure is applied as a basal nutrient dressing followed by fertilizer nitrogen later in the season.
Resumo:
An experiment was conducted to determine what effect simple treatments might have on the voluntary intake by goats in Nepal of Eupatorium adenophorum, an invasive weed that is usually only consumed by goats to a very limited extent. Samples of E. adenophorum were collected and either untreated, soaked for 2 h or wilted for 2 h before being oven dried (60 degrees C) and ground. Soaking and wilting had little effect on the chemical composition of E. adenophorum, but did increase (P=0.036) its in vitro organic matter degradability, by approximately 8%. The short-term intake rate (STIR) of treated and untreated E. adenophorum was then estimated with eight goats. Soaking time (from 2 to 24 h) was not related to STIR (r = -0.111, P=0.198), but the time E. adenophorum was left to wilt (from 2 to 48h), was positively related to STIR (r=0.521, P<0.001), with values of STIR (g dry matter/min kg goat liveweight(0.75)) being 0.405, 0.649,1.058, S.E.M. 0.088 for E. adenophorum, that had been wilted for 0, 24 and 48 h respectively (P<0.001). Liveweight change of goats and voluntary intake of E. adenophorum by goats was then estimated with 24 goats. E. adenophorum was fed either unwilted, or wilted for 24 or 48 h. It was fed as the sole forage or as a 3:1 mixture (dry matter basis) with Ficus cunia. There was a linear (P<0.001) and quadratic (P<0.01) increase in the intake of total forage and E. adenophorum with wilting time of E. adenophorum. Offering Ficus cunia increased total forage intake, but decreased E. adenophorum intake (P<0.05). After four weeks, there was virtually no change in goat liveweight and no significant difference between treatments. The results suggest that wilting E adenophorum for 24 h could increase its intake by goats, and thereby increase its usefulness, as a potential source of forage in the dry season of Nepal, when forage scarcity is a common constraint to livestock production. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fibre, crude protein and tannin concentrations were measured in browse species from the semi-arid region of Northeast Brazil during the dry and wet seasons. The effects of oven-, sun- and shade-drying and of urea treatment were also determined. Crude protein (CP) content varied from 103 to 161 g/kg dry matter (DM) and the browses had similar CP content in the two seasons (during 2002) (102-161 and 107-153 g/kg DM in the wet and dry seasons, respectively). Total tannin concentrations ranged from 13 to 201 g/kg DM amongst the browses and were higher in the dry season. A 30-d treatment with urea reduced extractable tannins significantly (P < 0.05). The urea treatment was also most effective at reducing the in vitro effects of tannins compared to the other drying treatments. This was demonstrated by measuring the effect of polyethylene glycol (PEG) on gas production. Addition of PEG increased gas production of oven- (81.4%), sun- (78.5%) and shade-dried (76.7%) samples much more compared to urea treated samples (10.9%). (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fabrication of a thin praseodymium oxide film is of great technological interest in sensor, semiconducting, and ceramic industries. It is shown for the first time that an ultrathin layer of praseodymium oxide can be deposited on tin-doped indium oxide surface (ITO) by applying a negative sweeping voltage (cathodic electrodeposition) to the aqueous solution containing Pr(NO3)(3) and H2O2 using cyclic voltammetry, followed by annealing the film at 500 S C for 1 h. X-ray diffraction suggested that the predominant phase of the film is Pr6O11 and atomic force microscopy and scanning electron microscopy characterizations indicated that this film is assembled with a monolayer coverage of spherical praseodymium oxide nanoparticles packed closely on the ITO surface. AC impedance measurements of the thin Pr6O11 film on ITO also revealed that the composite material displays a much higher electrical conductivity compared to the pure ITO. As a result, the material could suitably be used as a new chemical sensor. (c) 2006 The Electrochemical Society.
Resumo:
Praseodymium oxide as a thin film of controllable layer is known to display many unique physiochemical properties, which can be useful to ceramic, semiconductive and sensor industries. Here in this short paper, we describe a new chemical method of depositing praseodymium oxide on tin-doped indium oxide (ITO) surface using a layer-by-layer approach. The process is carried out by dipping the ITO in solutions of adsorbable polycationic chitosan and alkaline praseodymium hydroxide Pr(OH)(3) alternatively in order to build up the well-defined multi-layers. XRD suggests that the predominant form of the oxide is Pr6O11, obtained after heat treatment of the deposited ITO in static air at 500 degrees C. Microscopic studies including AFM, TEM and SEM indicate that the deposited oxide particles are uniform in size and shape (cylindrical), mesoporous and the thickness of the film can be controlled. AC impedance measurements of the deposited materials also reveal that the oxide layers display a high electrical conductivity hence suitable for sensor uses. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Research interest in oats has focussed on their nutritional value, but there have been few studies of their food processing. Heat treatment is characteristic of oat processing, as it is needed to inactivate lipase and to facilitate flaking. A Texture Analyser was used to characterise the mechanical properties of unkilned and kilned oat groats after steaming and tempering in an oven for 30, 60 and 90 min at 80, 95 and 110 degrees C. Maximum force, number of peaks before maximum and final force after 5s hold were used to characterise the behaviour of the groats during compression. Kilned groats were larger and softer before steaming. After steaming and tempering, the moisture content of the kilned groats was higher than for unkilned groats. Hot, steamed oats were softer than cold, unsteamed groats, indicated by a decrease in maximum force from 59 to 55 N, and there was no significant difference between kilned and unkilned groats. However, higher temperatures during tempering increased maximum force. These results suggest that mild steam treatment yields softer oat groats, whereas cold or over-treated groats tend to be harder. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The total phenols, apigenin 7-glucoside, turbidity and colour of extracts from dried chamomile flowers were studied with a view to develop chamomile extracts with potential anti-inflammatory properties for incorporation into beverages. The extraction of all constituents followed pseudo first-order kinetics. In general, the rate constant (k) increased as the temperature increased from 57 to 100 °C. The turbidity only increased significantly between 90 and 100 °C. Therefore, aqueous chamomile extracts had maximum total phenol concentration and minimum turbidity when extracted at 90 °C for 20 min. The effect of drying conditions on chamomile extracted using these conditions was determined. A significant reduction in phenol concentration, from 19.7 ± 0.5 mg/g GAE in fresh chamomile to 13 ± 1 mg/g GAE, was found only in the plant material oven-dried at 80 °C (p ⩽ 0.05). The biggest colour change was between fresh chamomile and that oven-dried at 80 °C, followed by samples air-dried. There was no significant difference in colour of material freeze-dried and oven-dried at 40 °C.
Resumo:
The objective of this study was to investigate the effect of drying conditions on the phenolic constituents and colour of extracts of organically grown white willow and meadowsweet for incorporation into a functional beverage with potential anti-inflammatory properties. The herbs were freeze-dried, air-dried, oven or tray-dried at 30 or 70 °C. The drying kinetics of the herbs was first determined. Both drying temperature and method had a significant effect (p ≤ 0.05) on the drying rate, the samples tray-dried had a faster drying rate than those oven-dried. Results show that for meadowsweet and willow, freeze-drying and oven or tray drying at 30 °C had no significant effect on the phenolic constituents (e.g. total phenols, salicylates, quercetin) or the colour of the extracts in comparison to traditional air-drying. Although increasing the drying temperature to 70 °C resulted in an increase in the drying rate of both herbs it also led to the loss of some phenolic compounds. Also, the extracts from both herbs dried at 70 °C were significantly (p ≤ 0.05) redder than the other drying methods. Therefore, tray drying these herbs at low temperatures may reduce drying time without having a significant effect on the phenolic content and colour of the extracts.
Resumo:
Tepe Pardis, a significant Neolithic–Chalcolithic site on the Tehran Plain in Iran, is, like many sites in the area, under threat from development. The site contains detailed evidence of (1) the Neolithic–Chalcolithic transition, (2) an Iron Age cemetery and (3) how the inhabitants adapted to an unstable fan environment through resource exploitation (of clay deposits for relatively large-scale ceramic production by c. 5000 BC, and importantly, possible cutting of artificial water channels). Given this significance, models have been produced to better understand settlement distribution and change in the region. However, these models must be tied into a greater understanding of the impact of the geosphere on human development over this period. Forming part of a larger project focusing on the transformation of simple, egalitarian Neolithic communities into more hierarchical Chalcolithic ones, the site has become the focus of a multidisciplinary project to address this issue. Through the combined use of sedimentary and limited pollen analysis, radiocarbon and optically stimulated luminescence dating (the application of the last still rare in Iran), a greater understanding of the impact of alluvial fan development on human settlement through alluviation and the development of river channel sequences is possible. Notably, the findings presented here suggest that artificial irrigation was occurring at the site as early as 6.7±0.4 ka (4300–5100 BC).
Resumo:
Reports of the presence of acrylamide in a range of fried and oven-cooked foods have caused worldwide concern because this compound has been classified as probably carcinogenic in humans. Here we show how acrylamide can be generated from food components during heat treatment as a result of the Maillard reaction between amino acids and reducing sugars. We find that asparagine, a major amino acid in potatoes and cereals, is a crucial participant in the production of acrylamide by this pathway.