25 resultados para Central Pacific Basin

em CentAUR: Central Archive University of Reading - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, the processes affecting sea surface temperature variability over the 1992–98 period, encompassing the very strong 1997–98 El Niño event, are analyzed. A tropical Pacific Ocean general circulation model, forced by a combination of weekly ERS1–2 and TAO wind stresses, and climatological heat and freshwater fluxes, is first validated against observations. The model reproduces the main features of the tropical Pacific mean state, despite a weaker than observed thermal stratification, a 0.1 m s−1 too strong (weak) South Equatorial Current (North Equatorial Countercurrent), and a slight underestimate of the Equatorial Undercurrent. Good agreement is found between the model dynamic height and TOPEX/Poseidon sea level variability, with correlation/rms differences of 0.80/4.7 cm on average in the 10°N–10°S band. The model sea surface temperature variability is a bit weak, but reproduces the main features of interannual variability during the 1992–98 period. The model compares well with the TAO current variability at the equator, with correlation/rms differences of 0.81/0.23 m s−1 for surface currents. The model therefore reproduces well the observed interannual variability, with wind stress as the only interannually varying forcing. This good agreement with observations provides confidence in the comprehensive three-dimensional circulation and thermal structure of the model. A close examination of mixed layer heat balance is thus undertaken, contrasting the mean seasonal cycle of the 1993–96 period and the 1997–98 El Niño. In the eastern Pacific, cooling by exchanges with the subsurface (vertical advection, mixing, and entrainment), the atmospheric forcing, and the eddies (mainly the tropical instability waves) are the three main contributors to the heat budget. In the central–western Pacific, the zonal advection by low-frequency currents becomes the main contributor. Westerly wind bursts (in December 1996 and March and June 1997) were found to play a decisive role in the onset of the 1997–98 El Niño. They contributed to the early warming in the eastern Pacific because the downwelling Kelvin waves that they excited diminished subsurface cooling there. But it is mainly through eastward advection of the warm pool that they generated temperature anomalies in the central Pacific. The end of El Niño can be linked to the large-scale easterly anomalies that developed in the western Pacific and spread eastward, from the end of 1997 onward. In the far-western Pacific, because of the shallower than normal thermocline, these easterlies cooled the SST by vertical processes. In the central Pacific, easterlies pushed the warm pool back to the west. In the east, they led to a shallower thermocline, which ultimately allowed subsurface cooling to resume and to quickly cool the surface layer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A detailed view of Southern Hemisphere storm tracks is obtained based on the application of filtered variance and modern feature-tracking techniques to a wide range of 45-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) data. It has been checked that the conclusions drawn in this study are valid even if data from only the satellite era are used. The emphasis of the paper is on the winter season, but results for the four seasons are also discussed. Both upper- and lower-tropospheric fields are used. The tracking analysis focuses on systems that last longer than 2 days and are mobile (move more than 1000 km). Many of the results support previous ideas about the storm tracks, but some new insights are also obtained. In the summer there is a rather circular, strong, deep high-latitude storm track. In winter the high-latitude storm track is more asymmetric with a spiral from the Atlantic and Indian Oceans in toward Antarctica and a subtropical jet–related lower-latitude storm track over the Pacific, again tending to spiral poleward. At all times of the year, maximum storm activity in the higher-latitude storm track is in the Atlantic and Indian Ocean regions. In the winter upper troposphere, the relative importance of, and interplay between, the subtropical and subpolar storm tracks is discussed. The genesis, lysis, and growth rate of lower-tropospheric winter cyclones together lead to a vivid picture of their behavior that is summarized as a set of overlapping plates, each composed of cyclone life cycles. Systems in each plate appear to feed the genesis in the next plate through downstream development in the upper-troposphere spiral storm track. In the lee of the Andes in South America, there is cyclogenesis associated with the subtropical jet and also, poleward of this, cyclogenesis largely associated with system decay on the upslope and regeneration on the downslope. The genesis and lysis of cyclones and anticyclones have a definite spatial relationship with each other and with the Andes. At 500 hPa, their relative longitudinal positions are consistent with vortex-stretching ideas for simple flow over a large-scale mountain. Cyclonic systems near Antarctica have generally spiraled in from lower latitudes. However, cyclogenesis associated with mobile cyclones occurs around the Antarctic coast with an interesting genesis maximum over the sea ice near 150°E. The South Pacific storm track emerges clearly from the tracking as a coherent deep feature spiraling from Australia to southern South America. A feature of the summer season is the genesis of eastward-moving cyclonic systems near the tropic of Capricorn off Brazil, in the central Pacific and, to a lesser extent, off Madagascar, followed by movement along the southwest flanks of the subtropical anticyclones and contribution to the “convergence zone” cloud bands seen in these regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Tropical cyclones have been investigated in a T159 version of the MPI ECHAM5 climate model using a novel technique to diagnose the evolution of the 3-dimensional vorticity structure of tropical cyclones, including their full life cycle from weak initial vortex to their possible extra-tropical transition. Results have been compared with reanalyses (ERA40 and JRA25) and observed tropical storms during the period 1978-1999 for the Northern Hemisphere. There is no indication of any trend in the number or intensity of tropical storms during this period in ECHAM5 or in re-analyses but there are distinct inter-annual variations. The storms simulated by ECHAM5 are realistic both in space and time, but the model and even more so the re-analyses, underestimate the intensities of the most intense storms (in terms of their maximum wind speeds). There is an indication of a response to ENSO with a smaller number of Atlantic storms during El Niño in agreement with previous studies. The global divergence circulation responds to El Niño by setting up a large-scale convergence flow, with the center over the central Pacific with enhanced subsidence over the tropical Atlantic. At the same time there is an increase in the vertical wind shear in the region of the tropical Atlantic where tropical storms normally develop. There is a good correspondence between the model and ERA40 except that the divergence circulation is somewhat stronger in the model. The model underestimates storms in the Atlantic but tends to overestimate them in the Western Pacific and in the North Indian Ocean. It is suggested that the overestimation of storms in the Pacific by the model is related to an overly strong response to the tropical Pacific SST anomalies. The overestimation in 2 the North Indian Ocean is likely to be due to an over prediction in the intensity of monsoon depressions, which are then classified as intense tropical storms. Nevertheless, overall results are encouraging and will further contribute to increased confidence in simulating intense tropical storms with high-resolution climate models.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A coupled ocean–atmosphere general circulation model is used to investigate the modulation of El Niño–Southern Oscillation (ENSO) variability due to a weakened Atlantic thermohaline circulation (THC). The THC weakening is induced by freshwater perturbations in the North Atlantic, and leads to a well-known sea surface temperature dipole and a southward shift of the intertropical convergence zone (ITCZ) in the tropical Atlantic. Through atmospheric teleconnections and local coupled air–sea feedbacks, a meridionally asymmetric mean state change is generated in the eastern equatorial Pacific, corresponding to a weakened annual cycle, and westerly anomalies develop over the central Pacific. The westerly anomalies are associated with anomalous warming of SST, causing an eastward extension of the west Pacific warm pool particularly in August–February, and enhanced precipitation. These and other changes in the mean state lead in turn to an eastward shift of the zonal wind anomalies associated with El Niño events, and a significant increase in ENSO variability. In response to a 1-Sv (1 Sv ≡ 106 m3 s−1) freshwater input in the North Atlantic, the THC slows down rapidly and it weakens by 86% over years 50–100. The Niño-3 index standard deviation increases by 36% during the first 100-yr simulation relative to the control simulation. Further analysis indicates that the weakened THC not only leads to a stronger ENSO variability, but also leads to a stronger asymmetry between El Niño and La Niña events. This study suggests a role for an atmospheric bridge that rapidly conveys the influence of the Atlantic Ocean to the tropical Pacific and indicates that fluctuations of the THC can mediate not only mean climate globally but also modulate interannual variability. The results may contribute to understanding both the multidecadal variability of ENSO activity during the twentieth century and longer time-scale variability of ENSO, as suggested by some paleoclimate records.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, the mechanisms leading to the El Nino peak and demise are explored through a coupled general circulation model ensemble approach evaluated against observations. The results here suggest that the timing of the peak and demise for intense El Nino events is highly predictable as the evolution of the coupled system is strongly driven by a southward shift of the intense equatorial Pacific westerly anomalies during boreal winter. In fact, this systematic late-year shift drives an intense eastern Pacific thermocline shallowing, constraining a rapid El Nino demise in the following months. This wind shift results from a southward displacement in winter of the central Pacific warmest SSTs in response to the seasonal evolution of solar insolation. In contrast, the intensity of this seasonal feedback mechanism and its impact on the coupled system are significantly weaker in moderate El Nino events, resulting in a less pronounced thermocline shallowing. This shallowing transfers the coupled system into an unstable state in spring but is not sufficient to systematically constrain the equatorial Pacific evolution toward a rapid El Nino termination. However, for some moderate events, the occurrence of intense easterly wind anomalies in the eastern Pacific during that period initiate a rapid surge of cold SSTs leading to La Nina conditions. In other cases, weaker trade winds combined with a slightly deeper thermocline allow the coupled system to maintain a broad warm phase evolving through the entire spring and summer and a delayed El Nino demise, an evolution that is similar to the prolonged 1986/87 El Nino event. La Nina events also show a similar tendency to peak in boreal winter, with characteristics and mechanisms mainly symmetric to those described for moderate El Nino cases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In 2002 India experienced a severe drought, one among the five worst droughts since records began in 1871, notable for its countrywide influence. The drought was primarily due to an unprecedented break in the monsoon during July, which persisted for almost the whole month and affected most of the sub-continent. The failure of the monsoon in 2002 was not predicted and India was not prepared for the devastating impacts on, for example, agriculture. This paper documents the evolution of the 2002 Indian summer monsoon and considers the possible factors that contributed to the drought and the failure of the forecasts. The development of the 2002/2003 El Nino and the unusually high levels of Madden-Julian Oscillation (MJO) activity during the monsoon season are identified as the central players. The 2002/2003 El Nino was characterised by very high sea-surface temperatures (SSTs) in the central Pacific that developed rapidly during the monsoon season. It is suggested that the unusual character of the developing El Nino was associated with the MJO and was a consequence of the eastward extension of the West Pacific Warm Pool, brought about primarily by a series of westerly wind events (WWEs) as part of the eastward movement of the active phase of the MJO. During the boreal summer, the MJO is usually characterised by northward movement, but in 2002 the northward component of the MJO was weak and the MJO was dominated by a strong eastward component, probably driven by the abnormally high SSTs in the central Pacific. It is suggested that a positive feedback existed between the developing El Nino and the eastward component of the MJO, which weakened the active phases of the monsoon. In particular, the unprecedented monsoon break in July could be associated with the juxtaposition of strong MJO activity with a developing El Nino, both of which interfered constructively with each other to produce major perturbations to the distribution of tropical heating. Subsequently, the main impact of the developing El Nino was a modulation of the Walker circulation that led to the overall suppression of the Indian monsoon during thess latter part of the season. It is argued that the unique combination of a rapidly developing El Nino and strong MJO activity, which was timed within the seasonal cycle to have maximum impact on the Indian summer monsoon, meant that prediction of the prolonged break in July and the seasonally deficient rainfall was a challenge for both the empirical and dynamical forecasting systems. Copyright (C) 2006 Royal Meteorological Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is argued that the essential aspect of atmospheric blocking may be seen in the wave breaking of potential temperature (θ) on a potential vorticity (PV) surface, which may be identified with the tropopause, and the consequent reversal of the usual meridional temperature gradient of θ. A new dynamical blocking index is constructed using a meridional θ difference on a PV surface. Unlike in previous studies, the central blocking latitude about which this difference is constructed is allowed to vary with longitude. At each longitude it is determined by the latitude at which the climatological high-pass transient eddy kinetic energy is a maximum. Based on the blocking index, at each longitude local instantaneous blocking, large-scale blocking, and blocking episodes are defined. For longitudinal sectors, sector blocking and sector blocking episodes are also defined. The 5-yr annual climatologies of the three longitudinally defined blocking event frequencies and the seasonal climatologies of blocking episode frequency are shown. The climatologies all pick out the eastern North Atlantic–Europe and eastern North Pacific–western North America regions. There is evidence that Pacific blocking shifts into the western central Pacific in the summer. Sector blocking episodes of 4 days or more are shown to exhibit different persistence characteristics to shorter events, showing that blocking is not just the long timescale tail end of a distribution. The PV–θ index results for the annual average location of Pacific blocking agree with synoptic studies but disagree with modern quantitative height field–based studies. It is considered that the index used here is to be preferred anyway because of its dynamical basis. However, the longitudinal discrepancy is found to be associated with the use in the height field index studies of a central blocking latitude that is independent of longitude. In particular, the use in the North Pacific of a latitude that is suitable for the eastern North Atlantic leads to spurious categorization of blocking there. Furthermore, the PV–θ index is better able to detect Ω blocking than conventional height field indices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent literature has described a “transition zone” between the average top of deep convection in the Tropics and the stratosphere. Here transport across this zone is investigated using an offline trajectory model. Particles were advected by the resolved winds from the European Centre for Medium-Range Weather Forecasts reanalyses. For each boreal winter clusters of particles were released in the upper troposphere over the four main regions of tropical deep convection (Indonesia, central Pacific, South America, and Africa). Most particles remain in the troposphere, descending on average for every cluster. The horizontal components of 5-day trajectories are strongly influenced by the El Niño–Southern Oscillation (ENSO), but the Lagrangian average descent does not have a clear ENSO signature. Tropopause crossing locations are first identified by recording events when trajectories from the same release regions cross the World Meteorological Organization lapse rate tropopause. Most crossing events occur 5–15 days after release, and 30-day trajectories are sufficiently long to estimate crossing number densities. In a further two experiments slight excursions across the lapse rate tropopause are differentiated from the drift deeper into the stratosphere by defining the “tropopause zone” as a layer bounded by the average potential temperature of the lapse rate tropopause and the profile temperature minimum. Transport upward across this zone is studied using forward trajectories released from the lower bound and back trajectories arriving at the upper bound. Histograms of particle potential temperature (θ) show marked differences between the transition zone, where there is a slow spread in θ values about a peak that shifts slowly upward, and the troposphere below 350 K. There forward trajectories experience slow radiative cooling interspersed with bursts of convective heating resulting in a well-mixed distribution. In contrast θ histograms for back trajectories arriving in the stratosphere have two distinct peaks just above 300 and 350 K, indicating the sharp change from rapid convective heating in the well-mixed troposphere to slow ascent in the transition zone. Although trajectories slowly cross the tropopause zone throughout the Tropics, all three experiments show that most trajectories reaching the stratosphere from the lower troposphere within 30 days do so over the west Pacific warm pool. This preferred location moves about 30°–50° farther east in an El Niño year (1982/83) and about 30° farther west in a La Niña year (1988/89). These results could have important implications for upper-troposphere–lower-stratosphere pollution and chemistry studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pacific ocean temperature anomalies associated with the El Niño–Southern Oscillation (ENSO) modulate atmospheric convection and hence thunderstorm electrification. The generated current flows globally via the atmospheric electric circuit, which can be monitored anywhere on Earth. Atmospheric electricity measurements made at Shetland (in Scotland) display a mean global circuit response to ENSO that is characterized by strengthening during 'El Niño' conditions, and weakening during 'La Niña' conditions. Examining the hourly varying response indicates that a potential gradient (PG) increase around noon UT is likely to be associated with a change in atmospheric convection and resultant lightning activity over equatorial Africa and Eastern Asia. A secondary increase in PG just after midnight UT can be attributed to more shower clouds in the central Pacific ocean during an 'El Niño'.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, the authors evaluate the (El Niño–Southern Oscillation) ENSO–Asian monsoon interaction in a version of the Hadley Centre coupled ocean–atmosphere general circulation model (CGCM) known as HadCM3. The main focus is on two evolving anomalous anticyclones: one located over the south Indian Ocean (SIO) and the other over the western North Pacific (WNP). These two anomalous anticyclones are closely related to the developing and decaying phases of the ENSO and play a crucial role in linking the Asian monsoon to ENSO. It is found that the HadCM3 can well simulate the main features of the evolution of both anomalous anticyclones and the related SST dipoles, in association with the different phases of the ENSO cycle. By using the simulated results, the authors examine the relationship between the WNP/SIO anomalous anticyclones and the ENSO cycle, in particular the biennial component of the relationship. It is found that a strong El Niño event tends to be followed by a more rapid decay and is much more likely to become a La Niña event in the subsequent winter. The twin anomalous anticyclones in the western Pacific in the summer of a decaying El Niño are crucial for the transition from an El Niño into a La Niña. The El Niño (La Niña) events, especially the strong ones, strengthen significantly the correspondence between the SIO anticyclonic (cyclonic) anomaly in the preceding autumn and WNP anticyclonic (cyclonic) anomaly in the subsequent spring, and favor the persistence of the WNP anomaly from spring to summer. The present results suggest that both El Niño (La Niña) and the SIO/WNP anticyclonic (cyclonic) anomalies are closely tied with the tropospheric biennial oscillation (TBO). In addition, variability in the East Asian summer monsoon, which is dominated by the internal atmospheric variability, seems to be responsible for the appearance of the WNP anticyclonic anomaly through an upper-tropospheric meridional teleconnection pattern over the western and central Pacific.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The boreal summer Asian monsoon has been evaluated in 25 Coupled Model Intercomparison Project-5 (CMIP5) and 22 CMIP3 GCM simulations of the late 20th Century. Diagnostics and skill metrics have been calculated to assess the time-mean, climatological annual cycle, interannual variability, and intraseasonal variability. Progress has been made in modeling these aspects of the monsoon, though there is no single model that best represents all of these aspects of the monsoon. The CMIP5 multi-model mean (MMM) is more skillful than the CMIP3 MMM for all diagnostics in terms of the skill of simulating pattern correlations with respect to observations. Additionally, for rainfall/convection the MMM outperforms the individual models for the time mean, the interannual variability of the East Asian monsoon, and intraseasonal variability. The pattern correlation of the time (pentad) of monsoon peak and withdrawal is better simulated than that of monsoon onset. The onset of the monsoon over India is typically too late in the models. The extension of the monsoon over eastern China, Korea, and Japan is underestimated, while it is overestimated over the subtropical western/central Pacific Ocean. The anti-correlation between anomalies of all-India rainfall and Niño-3.4 sea surface temperature is overly strong in CMIP3 and typically too weak in CMIP5. For both the ENSO-monsoon teleconnection and the East Asian zonal wind-rainfall teleconnection, the MMM interannual rainfall anomalies are weak compared to observations. Though simulation of intraseasonal variability remains problematic, several models show improved skill at representing the northward propagation of convection and the development of the tilted band of convection that extends from India to the equatorial west Pacific. The MMM also well represents the space-time evolution of intraseasonal outgoing longwave radiation anomalies. Caution is necessary when using GPCP and CMAP rainfall to validate (1) the time-mean rainfall, as there are systematic differences over ocean and land between these two data sets, and (2) the timing of monsoon withdrawal over India, where the smooth southward progression seen in India Meteorological Department data is better realized in CMAP data compared to GPCP data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the two most recent decades, more frequent drought struck southern China during autumn, causing an unprecedented water crisis. We found that the increasing autumn drought is largely attributed to an ENSO regime shift. Compared to traditional eastern-Pacific (EP) El Niño, central-Pacific (CP) El Niño events have occurred more frequently, with maximum sea surface temperature anomalies located near the dateline. Southern China usually experiences precipitation surplus during the autumn of EP El Niño years, while the CP El Niño tends to produce precipitation deficits. Since the CP El Niño has occurred more frequently while EP El Niño has become less common after the early 1990s, there has been a significant increase in the frequency of autumn drought. This has implications for increasing precipitation shortages over southern China in a warming world, in which CP El Niño events have been suggested to become more common.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous studies documented that a distinct southward shift of central-Pacific low-level wind anomalies occurring during the ENSO decaying phase, is caused by an interaction between the Western Pacific annual cycle and El Niño-Southern Oscillation (ENSO) variability. The present study finds that the meridional movement of the central-Pacific wind anomalies appears only during traditional Eastern-Pacific (or EP) El Niño events rather than in Central-Pacific (CP) El Niño events in which sea surface temperature (SST) anomalies are confined to the central Pacific. The zonal structure of ENSO-related SST anomalies therefore has an important effect on meridional asymmetry in the associated atmospheric response and its modulation by the annual cycle. In contrast to EP El Niño events, the SST anomalies of CP El Niño events extend further west towards to the warm pool region with its climatological warm SSTs. In the warm pool region, relatively small SST anomalies thus are able to excite convection anomalies on both sides of the equator, even with a meridionally asymmetric SST background state. Therefore, almost meridionally symmetric precipitation and wind anomalies are observed over the central Pacific during the decaying phase of CP El Niño events. The SST anomaly pattern of La Niña events is similar to CP El Niño events with a reversed sign. Accordingly, no distinct southward displacement of the atmospheric response occurs over the central Pacific during the La Niña decaying phase. These results have important implications for ENSO climate impacts over East Asia, since the anomalous low-level anticyclone over the western North Pacific is an integral part of the annual cycle-modulated ENSO response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The UPSCALE (UK on PRACE: weather-resolving Simulations of Climate for globAL Environmental risk) project, using PRACE (Partnership for Advanced Computing in Europe) resources, constructed and ran an ensemble of atmosphere-only global climate model simulations, using the Met Office Unified Model GA3 configuration. Each simulation is 27 years in length for both the present climate and an end-of-century future climate, at resolutions of N96 (130 km), N216 (60 km) and N512 (25 km), in order to study the impact of model resolution on high impact climate features such as tropical cyclones. Increased model resolution is found to improve the simulated frequency of explicitly tracked tropical cyclones, and correlations of interannual variability in the North Atlantic and North West Pacific lie between 0.6 and 0.75. Improvements in the deficit of genesis in the eastern North Atlantic as resolution increases appear to be related to the representation of African Easterly Waves and the African Easterly Jet. However, the intensity of the modelled tropical cyclones as measured by 10 m wind speed remain weak, and there is no indication of convergence over this range of resolutions. In the future climate ensemble, there is a reduction of 50% in the frequency of Southern Hemisphere tropical cyclones, while in the Northern Hemisphere there is a reduction in the North Atlantic, and a shift in the Pacific with peak intensities becoming more common in the Central Pacific. There is also a change in tropical cyclone intensities, with the future climate having fewer weak storms and proportionally more stronger storms

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous studies reported that positive phases of the Indian Ocean Dipole (IOD) tend to accompany El Niño during boreal autumn. Here we show that the El Niño/IOD relationship can be better understood when considering the two different El Niño flavors. Eastern-Pacific (EP) El Niño events exhibit a strong correlation with the IOD dependent on their magnitude. In contrast, the relationship between Central-Pacific (CP) El Niño events and the IOD depends mainly on the zonal location of the sea surface temperature anomalies rather than their magnitude. CP El Niño events lying further west than normal are not accompanied by significant anomalous easterlies over the eastern Indian Ocean along the Java/Sumatra coast, which is unfavorable for the local Bjerknes feedback and correspondingly for an IOD development. The El Niño/IOD relationship has experienced substantial changes due to the recent decadal El Niño regime shift, which has important implications for seasonal prediction.