2 resultados para Cementation
em CentAUR: Central Archive University of Reading - UK
Resumo:
Carbonate rocks are important hydrocarbon reservoir rocks with complex textures and petrophysical properties (porosity and permeability) mainly resulting from various diagenetic processes (compaction, dissolution, precipitation, cementation, etc.). These complexities make prediction of reservoir characteristics (e.g. porosity and permeability) from their seismic properties very difficult. To explore the relationship between the seismic, petrophysical and geological properties, ultrasonic compressional- and shear-wave velocity measurements were made under a simulated in situ condition of pressure (50 MPa hydrostatic effective pressure) at frequencies of approximately 0.85 MHz and 0.7 MHz, respectively, using a pulse-echo method. The measurements were made both in vacuum-dry and fully saturated conditions in oolitic limestones of the Great Oolite Formation of southern England. Some of the rocks were fully saturated with oil. The acoustic measurements were supplemented by porosity and permeability measurements, petrological and pore geometry studies of resin-impregnated polished thin sections, X-ray diffraction analyses and scanning electron microscope studies to investigate submicroscopic textures and micropores. It is shown that the compressional- and shear-wave velocities (V-p and V-s, respectively) decrease with increasing porosity and that V-p decreases approximately twice as fast as V-s. The systematic differences in pore structures (e.g. the aspect ratio) of the limestones produce large residuals in the velocity versus porosity relationship. It is demonstrated that the velocity versus porosity relationship can be improved by removing the pore-structure-dependent variations from the residuals. The introduction of water into the pore space decreases the shear moduli of the rocks by about 2 GPa, suggesting that there exists a fluid/matrix interaction at grain contacts, which reduces the rigidity. The predicted Biot-Gassmann velocity values are greater than the measured velocity values due to the rock-fluid interaction. This is not accounted for in the Biot-Gassmann velocity models and velocity dispersion due to a local flow mechanism. The velocities predicted by the Raymer and time-average relationships overestimated the measured velocities even more than the Biot model.
Resumo:
The Miocene Globigerina Limestone of the Maltese islands contains widespread omission surfaces with very different characteristics and origins. The terminal Lower Globigerina Limestone hardground (TLGLHg) formed during a period of falling sea level. Coccolith assemblages suggest shallowness. Sedimentary structures and trace fossil assemblages, indicate increasing frequency of storm events and erosional episodes, towards the surface. Calcite cementation which took place around Thalassinoides burrows and formed irregular nodules was followed by dissolution of aragonite. It is suggested that lithification was linked to microbial reactions involving organic matter. In contrast two later surfaces, the terminal Middle Globigerina Limestone omissionground (TMGLOg), which marks the Lower to Middle Miocene boundary, and the Fomm-ir-Rih local hardground (FiRLHg) both contain early diagenetic dolomite. Lithification took place in two phases. The dolomite is interpreted to have formed beneath the sea floor: it was subsequently exhumed and partially corroded as the precipitation of calcitic and phosphatic cements took place around burrows open to the circulation of sea water. (C) 2008 Elsevier B.V. All rights reserved.