5 resultados para Category
em CentAUR: Central Archive University of Reading - UK
Resumo:
In three experiments, the authors investigated the impression-formation process resulting from the perception of familiar or unfamiliar social category combinations. In Experiment 1, participants were asked to generate attributes associated with either a familiar or unfamiliar social category conjunction. Compared to familiar combinations, the authors found that when the conjunction was unfamiliar, participants formed their impression less from the individual constituent categories and relatively more from novel emergent attributes. In Experiment 2 the authors replicated this effect using alternative experimental materials. In Experiment 3, the effect generalized to additional (orthogonally combined) gender and occupation categories. The implications of these findings for understanding the processes involved in the conjunction of social categories, and the formation of new stereotypes, are discussed.
Resumo:
The IEEE 754 standard for oating-point arithmetic is widely used in computing. It is based on real arithmetic and is made total by adding both a positive and a negative infinity, a negative zero, and many Not-a-Number (NaN) states. The IEEE infinities are said to have the behaviour of limits. Transreal arithmetic is total. It also has a positive and a negative infinity but no negative zero, and it has a single, unordered number, nullity. We elucidate the transreal tangent and extend real limits to transreal limits. Arguing from this firm foundation, we maintain that there are three category errors in the IEEE 754 standard. Firstly the claim that IEEE infinities are limits of real arithmetic confuses limiting processes with arithmetic. Secondly a defence of IEEE negative zero confuses the limit of a function with the value of a function. Thirdly the definition of IEEE NaNs confuses undefined with unordered. Furthermore we prove that the tangent function, with the infinities given by geometrical con- struction, has a period of an entire rotation, not half a rotation as is commonly understood. This illustrates a category error, confusing the limit with the value of a function, in an important area of applied mathe- matics { trigonometry. We brie y consider the wider implications of this category error. Another paper proposes transreal arithmetic as a basis for floating- point arithmetic; here we take the profound step of proposing transreal arithmetic as a replacement for real arithmetic to remove the possibility of certain category errors in mathematics. Thus we propose both theo- retical and practical advantages of transmathematics. In particular we argue that implementing transreal analysis in trans- floating-point arith- metic would extend the coverage, accuracy and reliability of almost all computer programs that exploit real analysis { essentially all programs in science and engineering and many in finance, medicine and other socially beneficial applications.