4 resultados para Castor oil polymer
em CentAUR: Central Archive University of Reading - UK
Resumo:
Time dependent gas hold-up generated in the 0.3 and 0.6 m diameter vessels using high viscosity castor oil and carboxy methyl cellulose (CMC) solution was compared on the basis of impeller speed (N) and gas velocity (V-G). Two types of hold-up were distinguished-the hold-up due to tiny bubbles (epsilon(ft)) and total hold-up (epsilon(f)), which included large and tiny bubbles. It was noted that vessel diameter (i.e. the scale of operation) significantly influences (i) the trends and the values of epsilon(f) and epsilon(ft), and (ii) the values of tau (a constant reflecting the time dependency of hold-up). The results showed that a scale independent correlation for gas hold-up of the form epsilon(f) or epsilon(ft) = A(N or P-G/V)(a) (V-G)(b), where "a" and "b" are positive constants is not appropriate for viscous liquids. This warrants further investigations into the effect of vessel diameter on gas hold-up in impeller agitated high viscosity liquids (mu or mu(a) > 0.4 Pa s). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The resonance effect of microcrystalline cellulose/castor oil electrorheological (ER) suspensions was studied in a compressed oscillatory squeeze flow under external electric fields. The resonance frequency first increases linearly with increasing external held, and then shift to high-field plateau. The amplitudes of resonance peak increase sharply with the applied fields in the range of 0.17-1.67kV/mm. The phase difference of the reduced displacement relative to the excitation force inverses in the case of resonance. A viscoelasticity model of the ER suspensions, which offers both the equivalent stiffness and the viscous damping, should be responsible for the appearance of resonance. The influence of the electric field on the resonance frequency and the resonance hump is consistent qualitatively with the interpretation of our proposed model. Storage modulus G' was presented for the purpose of investigating this influence.
Resumo:
Dynamic viscoelasticity of electrorheological fluids based on microcrystalline cellulose/castor oil suspensions was experimentally investigated in squeeze flow. The dependence of storage modulus G' and loss modulus G" parallel to external electric field on electric fields and strain amplitudes is presented. The experiments show that, when external electric field is higher than the critical field, the viscoelasticity of the ER fluids converts from linear to nonlinear, and the ER fluids transfer from solid-like state to fluid state with the growth of strain amplitude. The influences of strain amplitude and oscillatory frequency on the nonlinearity of viscoelasticity were also studied.
Resumo:
We performed atomistic molecular dynamics simulations of anionic and cationic micelles in the presence of poly(ethylene oxide) (PEO) to understand why nonionic water-soluble polymers such as PEO interact strongly with anionic micelles but only weakly with cationic micelles. Our micelles include sodium n-dodecyl sulfate (SDS), n-dodecyl trimethylammonium chloride (DTAC), n-dodecyl ammonium chloride (DAC), and micelles in which we artificially reverse the sign of partial charges in SDS and DTAC. We observe that the polymer interacts hydrophobically with anionic SDS but only weakly with cationic DTAC and DAC, in agreement with experiment. However, the polymer also interacts with the artificial anionic DTAC but fails to interact hydrophobically with the artificial cationic SDS, illustrating that large headgroup size does not explain the weak polymer interaction with cationic micelles. In addition, we observe through simulation that this preference for interaction with anionic micelles still exists in a dipolar "dumbbell" solvent, indicating that water structure and hydrogen bonding alone cannot explain this preferential interaction. Our simulations suggest that direct electrostatic interactions between the micelle and polymer explain the preference for interaction with anionic micelles, even though the polymer overall carries no net charge. This is possible given the asymmetric distribution of negative charges on smaller atoms and positive charges oil larger units in the polymer chain.