57 resultados para Carrier-envelope phase control
em CentAUR: Central Archive University of Reading - UK
Resumo:
This paper addresses the effects of synchronisation errors (time delay, carrier phase, and carrier frequency) on the performance of linear decorrelating detectors (LDDs). A major effect is that all LDDs require certain degree of power control in the presence of synchronisation errors. The multi-shot sliding window algorithm (SLWA) and hard decision method (HDM) are analysed and their power control requirements are examined. Also, a more efficient one-shot detection scheme, called “hard-decision based coupling cancellation”, is proposed and analysed. These schemes are then compared with the isolation bit insertion (IBI) approach in terms of power control requirements.
Resumo:
This work investigated the role of rpoS in the development of increased cell envelope resilience and enhanced pressure resistance in stationary phase cells of Escherichia coli. Loss of both colony-forming ability and membrane integrity, measured as uptake of propidium iodide (PI), occurred at lower pressures in E. coli BW3709 (rpoS) than in the parental strain (BW2952). The rpoS mutant also released much higher concentrations of protein under pressure than the parent. We propose that RpoS-regulated functions are responsible for the increase in membrane resilience as cells enter stationary phase and that this plays a major role in the development of pressure resistance. Strains from the Keio collection with mutations in two RpoS-regulated genes, cfa (cyclopropane fatty acyl phospholipid synthase) and osmB (outer membrane lipoprotein), were significantly more pressure-sensitive and took up more PI than the parent strains with cfa having the greatest effect. Mutations in the bolA morphogene and other RpoS-regulated lipoprotein genes (osmC, osmE, osmY and ybaY) had no effect on pressure resistance. The cytoplasmic membranes of the rpoS mutant failed to reseal after pressure treatment and strains with mutations in osmB and nlpI (new lipoprotein) were also somewhat impaired in the ability to reseal their membranes. The cfa mutant, though pressure-sensitive, was unaffected in membrane resealing implying that the initial transient permeabilization event is critical for loss of viability rather than the failure to reseal. The enhanced pressure sensitivity of polA, recA and xthA mutants suggested that DNA may be a target of oxidative stress in pressure-treated cells.
Resumo:
Climate simulations by 16 atmospheric general circulation models (AGCMs) are compared on an aqua-planet, a water-covered Earth with prescribed sea surface temperature varying only in latitude. The idealised configuration is designed to expose differences in the circulation simulated by different models. Basic features of the aqua-planet climate are characterised by comparison with Earth. The models display a wide range of behaviour. The balanced component of the tropospheric mean flow, and mid-latitude eddy covariances subject to budget constraints, vary relatively little among the models. In contrast, differences in damping in the dynamical core strongly influence transient eddy amplitudes. Historical uncertainty in modelled lower stratospheric temperatures persists in APE. Aspects of the circulation generated more directly by interactions between the resolved fluid dynamics and parameterized moist processes vary greatly. The tropical Hadley circulation forms either a single or double inter-tropical convergence zone (ITCZ) at the equator, with large variations in mean precipitation. The equatorial wave spectrum shows a wide range of precipitation intensity and propagation characteristics. Kelvin mode-like eastward propagation with remarkably constant phase speed dominates in most models. Westward propagation, less dispersive than the equatorial Rossby modes, dominates in a few models or occurs within an eastward propagating envelope in others. The mean structure of the ITCZ is related to precipitation variability, consistent with previous studies. The aqua-planet global energy balance is unknown but the models produce a surprisingly large range of top of atmosphere global net flux, dominated by differences in shortwave reflection by clouds. A number of newly developed models, not optimised for Earth climate, contribute to this. Possible reasons for differences in the optimised models are discussed. The aqua-planet configuration is intended as one component of an experimental hierarchy used to evaluate AGCMs. This comparison does suggest that the range of model behaviour could be better understood and reduced in conjunction with Earth climate simulations. Controlled experimentation is required to explore individual model behaviour and investigate convergence of the aqua-planet climate with increasing resolution.
Resumo:
Understanding links between the El Nino-Southern Oscillation (ENSO) and snow would be useful for seasonal forecasting, but also for understanding natural variability and interpreting climate change predictions. Here, a 545-year run of the general circulation model HadCM3, with prescribed external forcings and fixed greenhouse gas concentrations, is used to explore the impact of ENSO on snow water equivalent (SWE) anomalies. In North America, positive ENSO events reduce the mean SWE and skew the distribution towards lower values, and vice versa during negative ENSO events. This is associated with a dipole SWE anomaly structure, with anomalies of opposite sign centered in western Canada and the central United States. In Eurasia, warm episodes lead to a more positively skewed distribution and the mean SWE is raised. Again, the opposite effect is seen during cold episodes. In Eurasia the largest anomalies are concentrated in the Himalayas. These correlations with February SWE distribution are seen to exist from the previous June-July-August (JJA) ENSO index onwards, and are weakly detected in 50-year subsections of the control run, but only a shifted North American response can be detected in the anaylsis of 40 years of ERA40 reanalysis data. The ENSO signal in SWE from the long run could still contribute to regional predictions although it would be a weak indicator only
Resumo:
Quadrature Phase Shift Keying (QPSK) and Dual Carrier Modulation (DCM) are currently used as the modulation schemes for Multiband Orthogonal Frequency Division Multiplexing (MB-OFDM) in the ECMA-368 defined Ultra-Wideband (UWB) radio platform. ECMA-368 has been chosen as the physical radio platform for many systems including Wireless USB (W-USB), Bluetooth 3.0 and Wireless HDMI; hence ECMA-368 is an important issue to consumer electronics and the users’ experience of these products. To enable the transport of high-rate USB, ECMA-368 offers up to 480 Mb/s instantaneous bit rate to the Medium Access Control (MAC) layer, but depending on radio channel conditions dropped packets unfortunately result in a lower throughput. This paper presents improvement on a high data rate modulation scheme that fits within the configuration of the current standard increasing system throughput by achieving 600 Mb/s (reliable to 3.2 meters) thus maintaining the high rate USB throughput even with a moderate level of dropped packets. The modulation system is termed improved and optimal Dual Circular 32-QAM (DC 32-QAM). The system performance for improved and optimal DC 32-QAM modulation is presented and compared with previous DC 32- QAM, 16-QAM and DCM.
Resumo:
The interactions have been investigated of puroindoline-a (Pin-a) and mixed protein systems of Pin-a and wild-type puroindoline-b (Pin-b+) or puroindoline-b mutants (G46S mutation (Pin bH) or W44R mutation (Pin-bS)) with condensed phase monolayers of an anionic phospholipid (L-α-dipalmitoylphosphatidyl-dl-glycerol (DPPG)) at the air/water interface. The interactions of the mixed systems were studied at three different concentration ratios of Pin-a:Pin-b, namely 3:1, 1:1 and 1:3 in order to establish any synergism in relation to lipid binding properties. Surface pressure measurements revealed that Pin-a interaction with DPPG monolayers led to an equilibrium surface pressure increase of 8.7 ± 0.6 mN m-1. This was less than was measured for Pin-a:Pin-b+ (9.6 to 13.4 mN m-1), but was significantly more than was measured for Pin-a:Pin-bH (4.0 to 6.2 mN m-1) or Pin-a:Pin-bS (3.8 to 6.3 mN m-1) over the complete range of concentration ratio. Consequently, surface pressure increases were shown to correlate to endosperm hardness phenotype, with puroindolines present in hard-textured wheat varieties yielding lower equilibrium surface pressure changes. Integrated amide I peak areas from corresponding external reflectance Fourier-transform infrared (ER-FTIR) spectra, used to indicate levels of protein adsorption to the lipid monolayers, showed that differences in adsorbed amount were less significant. The data therefore suggest that Pin-b mutants having single residue substitutions within their tryptophan-rich loop that are expressed in some hard-textured wheat varieties influence the degree of penetration of Pin-a and Pin-b into anionic phospholipid films. These findings highlight the key role of the tryptophan-rich loop in puroindoline-lipid interactions.
Resumo:
Most statistical methodology for phase III clinical trials focuses on the comparison of a single experimental treatment with a control. An increasing desire to reduce the time before regulatory approval of a new drug is sought has led to development of two-stage or sequential designs for trials that combine the definitive analysis associated with phase III with the treatment selection element of a phase II study. In this paper we consider a trial in which the most promising of a number of experimental treatments is selected at the first interim analysis. This considerably reduces the computational load associated with the construction of stopping boundaries compared to the approach proposed by Follman, Proschan and Geller (Biometrics 1994; 50: 325-336). The computational requirement does not exceed that for the sequential comparison of a single experimental treatment with a control. Existing methods are extended in two ways. First, the use of the efficient score as a test statistic makes the analysis of binary, normal or failure-time data, as well as adjustment for covariates or stratification straightforward. Second, the question of trial power is also considered, enabling the determination of sample size required to give specified power. Copyright © 2003 John Wiley & Sons, Ltd.
Resumo:
There is increasing interest in combining Phases II and III of clinical development into a single trial in which one of a small number of competing experimental treatments is ultimately selected and where a valid comparison is made between this treatment and the control treatment. Such a trial usually proceeds in stages, with the least promising experimental treatments dropped as soon as possible. In this paper we present a highly flexible design that uses adaptive group sequential methodology to monitor an order statistic. By using this approach, it is possible to design a trial which can have any number of stages, begins with any number of experimental treatments, and permits any number of these to continue at any stage. The test statistic used is based upon efficient scores, so the method can be easily applied to binary, ordinal, failure time, or normally distributed outcomes. The method is illustrated with an example, and simulations are conducted to investigate its type I error rate and power under a range of scenarios.
Resumo:
Bayesian decision procedures have already been proposed for and implemented in Phase I dose-escalation studies in healthy volunteers. The procedures have been based on pharmacokinetic responses reflecting the concentration of the drug in blood plasma and are conducted to learn about the dose-response relationship while avoiding excessive concentrations. However, in many dose-escalation studies, pharmacodynamic endpoints such as heart rate or blood pressure are observed, and it is these that should be used to control dose-escalation. These endpoints introduce additional complexity into the modeling of the problem relative to pharmacokinetic responses. Firstly, there are responses available following placebo administrations. Secondly, the pharmacodynamic responses are related directly to measurable plasma concentrations, which in turn are related to dose. Motivated by experience of data from a real study conducted in a conventional manner, this paper presents and evaluates a Bayesian procedure devised for the simultaneous monitoring of pharmacodynamic and pharmacokinetic responses. Account is also taken of the incidence of adverse events. Following logarithmic transformations, a linear model is used to relate dose to the pharmacokinetic endpoint and a quadratic model to relate the latter to the pharmacodynamic endpoint. A logistic model is used to relate the pharmacokinetic endpoint to the risk of an adverse event.
Resumo:
Cocoa farms that had been treated and replanted in Ghana during the most recent phase of the cocoa swollen shoot virus (CSSV) eradication campaign were surveyed. Farms that were replanted close to adjoining old cocoa farms or which contained old trees were common in most (38) of the 41 cocoa farms surveyed. CSSV infections were apparent in 20 (53%) out of these 38 farms and they pose a serious risk of causing early infections of the re-planted farms. Control strategies that isolate the newly planted farms by a boundary of immune crops as barriers to reduce CSSV re-infection are discussed. (c) 2005 Elsevier Ltd. All rights reserved.