9 resultados para Carotid artery

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives The administration of unfractionated heparin (UFH) prior to carotid clamping during carotid endarterectomy (CEA) transiently increases the platelet aggregation response to arachidonic acid (AA) despite the use of aspirin. We hypothesized that this phenomenon might be reduced by using low molecular weight heparin (LMWH) resulting in fewer emboli in the early post-operative period. Methods 183 aspirinated patients undergoing CEA were randomised to 5000 IU UFH (n = 91) or 2500 IU LMWH (dalteparin, n = 92) prior to carotid clamping. End-points were: transcranial Doppler (TCD) measurement of embolisation, effect on bleeding and platelet aggregation to AA and adenosine 5′-diphosphate (ADP). Results Patients randomised to UFH had twice the odds of experiencing a higher number of emboli in the first 3 h after CEA, than those randomised to LMWH (p = 0.04). This was not associated with increased bleeding (mean time from flow restoration to operation end: 23 min (UFH) vs. 24 min (LMWH), p = 0.18). Platelet aggregation to AA increased significantly following heparinisation, but was unaffected by heparin type (p = 0.90). The platelets of patients randomised to LMWH exhibited significantly lower aggregation to ADP compared to UFH (p < 0.0001). Conclusions Intravenous LMWH is associated with a significant reduction in post-operative embolisation without increased bleeding. The higher rate of embolisation seen with UFH may be mediated by increased platelet aggregation to ADP, rather than to AA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently found block of NO synthase in rat middle cerebral artery caused spasm, associated with depolarizing oscillations in membrane potential (Em) similar in form but faster in frequency (circa 1 Hz) to vasomotion. T-type voltage-gated Ca2+ channels contribute to cerebral myogenic tone and vasomotion, so we investigated the significance of T-type and other ion channels for membrane potential oscillations underlying arterial spasm. Smooth muscle cell membrane potential (Em) and tension were measured simultaneously in rat middle cerebral artery. NO synthase blockade caused temporally coupled depolarizing oscillations in cerebrovascular Em with associated vasoconstriction. Both events were accentuated by block of smooth muscle BKCa. Block of T-type channels or inhibition of Na+/K+-ATPase abolished the oscillations in Em and reduced vasoconstriction. Oscillations in Em were either attenuated or accentuated by reducing [Ca2+]o or block of KV, respectively. TRAM-34 attenuated oscillations in both Em and tone, apparently independent of effects against KCa3.1. Thus, rapid depolarizing oscillations in Em and tone observed after endothelial function has been disrupted reflect input from T-type calcium channels in addition to L-type channels, while other depolarizing currents appear to be unimportant. These data suggest that combined block of T and L-type channels may represent an effective approach to reverse cerebral vasospasm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NO/prostanoid independent, EDHF-mediated hyperpolarization and dilation in rat middle cerebral arteries is mediated solely by endothelial cell IK(Ca). However, when the NO-pathway is also active, both SK(Ca) and IK(Ca) contribute to EDHF responses. As the SK(Ca) component can be inhibited by stimulation of thromboxane A(2) (TxA(2)) TP receptors and NO has the potential ability to inhibit thromboxane synthesis, we investigated whether TxA(2) might explain loss of functional input from SK(Ca) during NOS inhibition in cerebral arteries. EXPERIMENTAL APPROACH: Rat middle cerebral arteries were mounted in a wire myograph. Endothelium-dependent responses to the PAR2 agonist, SLIGRL were assessed as simultaneous changes in smooth muscle membrane potential and tension. KEY RESULTS: Responses were obtained in the presence of L-NAME as appropriate. Inhibition of TP receptors with either ICI 192,605 or SQ 29,548, did not affect EDHF mediated hyperpolarization and relaxation, but in their presence neither TRAM-34 nor apamin (to block IK(Ca) and SK(Ca) respectively) individually affected the EDHF response. However, in combination they virtually abolished it. Similar effects were obtained in the presence of the thromboxane synthase inhibitor, furegrelate, which additionally revealed an iberiotoxin-sensitive residual EDHF hyperpolarization and relaxation in the combined presence of TRAM-34 and apamin. CONCLUSIONS AND IMPLICATIONS: In the rat middle cerebral artery, inhibition of NOS leads to a loss of the SK(Ca) component of EDHF responses. Either antagonism of TP receptors or block of thromboxane synthase restores an input through SK(Ca). These data indicate that NO normally enables SK(Ca) activity in rat middle cerebral arteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelium-derived hyperpolarizing factor responses in the rat middle cerebral artery are blocked by inhibiting IKCa channels alone, contrasting with peripheral vessels where block of both IKCa and SKCa is required. As the contribution of IKCa and SKCa to endothelium-dependent hyperpolarization differs in peripheral arteries, depending on the level of arterial constriction, we investigated the possibility that SKCa might contribute to equivalent hyperpolarization in cerebral arteries under certain conditions. METHODS: Rat middle cerebral arteries (approximately 175 microm) were mounted in a wire myograph. The effect of KCa channel blockers on endothelium-dependent responses to the protease-activated receptor 2 agonist, SLIGRL (20 micromol/L), were then assessed as simultaneous changes in tension and membrane potential. These data were correlated with the distribution of arterial KCa channels revealed with immunohistochemistry. RESULTS: SLIGRL hyperpolarized and relaxed cerebral arteries undergoing variable levels of stretch-induced tone. The relaxation was unaffected by specific inhibitors of IKCa (TRAM-34, 1 micromol/L) or SKCa (apamin, 50 nmol/L) alone or in combination. In contrast, the associated smooth-muscle hyperpolarization was inhibited, but only with these blockers in combination. Blocking nitric oxide synthase (NOS) or guanylyl cyclase evoked smooth-muscle depolarization and constriction, with both hyperpolarization and relaxation to SLIGRL being abolished by TRAM-34 alone, whereas apamin had no effect. Immunolabeling showed SKCa and IKCa within the endothelium. CONCLUSIONS: In the absence of NO, IKCa underpins endothelium-dependent hyperpolarization and relaxation in cerebral arteries. However, when NOS is active SKCa contributes to hyperpolarization, whatever the extent of background contraction. These changes may have relevance in vascular disease states where NO release is compromised and when the levels of SKCa expression may be altered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Purpose— Endothelium-derived hyperpolarizing factor (EDHF) and K+ are vasodilators in the cerebral circulation. Recently, K+ has been suggested to contribute to EDHF-mediated responses in peripheral vessels. The EDHF response to the protease-activated receptor 2 ligand SLIGRL was characterized in cerebral arteries and used to assess whether K+ contributes as an EDHF. Methods— Rat middle cerebral arteries were mounted in either a wire or pressure myograph. Concentration-response curves to SLIGRL and K+ were constructed in the presence and absence of a variety of blocking agents. In some experiments, changes in tension and smooth muscle cell membrane potential were recorded simultaneously. Results— SLIGRL (0.02 to 20 μmol/L) stimulated concentration and endothelium-dependent relaxation. In the presence of NG-nitro-L-arginine methyl ester, relaxation to SLIGRL was associated with hyperpolarization and sensitivity to a specific inhibitor of IKCa, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (1μmol/L), reflecting activation of EDHF. Combined inhibition of KIR with Ba2+ (30μmol/L) and Na+/K+-ATPase with ouabain (1 μmol/L) markedly attenuated the relaxation to EDHF. Raising extracellular [K+] to 15 mmol/L also stimulated smooth muscle relaxation and hyperpolarization, which was also attenuated by combined application of Ba2+ and ouabain. Conclusions— SLIGRL evokes EDHF-mediated relaxation in the rat middle cerebral artery, underpinned by hyperpolarization of the smooth muscle. The profile of blockade of EDHF-mediated hyperpolarization and relaxation supports a pivotal role for IKCa channels. Furthermore, similar inhibition of responses to EDHF and exogenous K+ with Ba2+ and ouabain suggests that K+ may contribute as an EDHF in the middle cerebral artery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: We have previously shown that a single 75-mg tablet of clopidogrel, taken before carotid endarterectomy, significantly reduces postoperative embolization, a marker of thromboembolic stroke. This study explores the antiplatelet effect of this submaximal dose. METHODS: Fifty-six patients on long-term aspirin (150 mg) were randomized to 75 mg clopidogrel or placebo before carotid endarterectomy. Blood samples were taken pre- and postdrug administration and at the end of surgery to measure platelet activation and adenosine diphosphate (ADP) response by flow cytometry and aggregometry. RESULTS: Surgery produced a significant rise in platelet activation in vivo as evidenced by a rise in the percentage of monocyte-platelet aggregates in patients given placebo, but this was not seen in patients receiving clopidogrel. Before surgery, clopidogrel produced a significant reduction in the platelet response to ADP; for example, with 10(-6)M ADP, 77.32+/-2.3% bound fibrinogen in placebo group compared with 67.16+/-3.1% after clopidogrel (P=0.01). This was accentuated after surgery when the percentage of platelets binding fibrinogen in response to ADP was 76.53+/-2.2% in patients given placebo and 62.84+/-3.3% in the clopidogrel group (P=0.002). Similar differences were seen over a range of ADP concentrations and by aggregometry. Platelet responsiveness before treatment was highly variable and was positively correlated with the inhibitory effect of clopidogrel; patients with the highest baseline response to ADP showed the greatest response to clopidogrel. A negative correlation was seen between the effect of clopidogrel and patients' weight (r=0.57; P=0.002). CONCLUSIONS: These results explain how a single 75-mg dose of clopidogrel produces a significant clinical impact on embolization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Aspirin therapy is usually continued throughout the perioperative period to reduce the risk for thromboembolic stroke and myocardial infarction after carotid endarterectomy (CEA). Aspirin irreversibly binds cyclooxygenase-1, thereby reducing platelet aggregation for the lifetime of each platelet. However, recent research from this unit has shown that aggregation in response to arachidonic acid increases significantly, but transiently, during CEA, which suggests that the anti-platelet effect of aspirin is temporarily reversed. The purpose of the current study was to determine when this phenomenon occurs and to identify the possible mechanisms involved. METHODS: Platelet aggregation was measured in platelet-rich plasma from 41 patients undergoing CEA who were stabilized with 150 mg of aspirin daily. Blood was taken at 8 time points: before anesthesia, after anesthesia, before heparinization, 3 minutes after heparinization, 3 minutes after shunt insertion, 10 minutes after flow restoration, 4 hours postoperatively, and 24 hours postoperatively. Platelet aggregation was also measured at similar times in a group of 18 patients undergoing peripheral angioplasty without general anesthesia. RESULTS: All patient platelets were effectively inhibited by aspirin at the start of the operation. There was a significant intraoperative increase in platelet response to arachidonic acid in both groups of patients, which occurred within 3 minutes of administration of unfractionated heparin. In the CEA group this resulted in a greater than 10-fold increase in mean aggregation, to 5 mmol/L of arachidonic acid (5 mmol/L), rising from 3.9% +/- 2.2% preoperatively to 45.1% +/- 29.3% after administration of heparin ( P <.0001). This increased aggregation persisted into the early postoperative period, but by 24 hours post operation aggregation had returned to near preoperative values. Aggregation in response to other platelet agonists (adenosine diphosphate, thrombin receptor agonist peptide) showed only a small increase at the same time, which could be accounted for by a parallel increase in the level of spontaneous aggregation. CONCLUSION: Administration of heparin significantly increases platelet aggregation in response to arachidonic acid, despite adequate inhibition by aspirin administered preoperatively. This apparent reversal in anti-platelet activity persisted into the immediate early postoperative period, and could explain why a small proportion of patients are at increased risk for acute cardiovascular events after major vascular surgery, despite aspirin therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Purpose. In rat middle cerebral arteries, endothelium-dependent hyperpolarization (EDH) is mediated by activation of calcium-activated potassium(KCa) channels specifically KCa2.3 and KCa3.1. Lipoxygenase (LOX) products function as endothelium-derived hyperpolarizing factors (EDHFs) in rabbit arteries by stimulating KCa2.3. We investigated if LOX products contribute to EDH in rat cerebral arteries. Methods. Arachidonic acid (AA) metabolites produced in middle cerebral arteries were measured using HPLC and LC/MS. Vascular tension and membrane potential responses to SLIGRL were simultaneously recorded using wire myography and intracellular microelectrodes. Results. SLIGRL, an agonist at PAR2 receptors, caused EDH that was inhibited by a combination of KCa2.3 and KCa3.1 blockade. Non-selective LOX-inhibition reduced EDH, whereas inhibition of 12-LOX had no effect. Soluble epoxide hydrolase (sEH) inhibition enhanced the KCa2.3 component of EDH. Following NO synthase (NOS) inhibition, the KCa2.3 component of EDH was absent. Using HPLC, middle cerebral arteries metabolized 14C-AA to 15- and 12-LOX products under control conditions. With NOS inhibition, there was little change in LOX metabolites, but increased F-type isoprostanes. 8-iso-PGF2α inhibited the KCa2.3 component of EDH. Conclusions. LOX metabolites mediate EDH in rat middle cerebral arteries. Inhibition of sEH increases the KCa2.3 component of EDH. Following NOS inhibition,loss of KCa2.3 function is independent of changes in LOX production or sEH inhibition but due to increased isoprostane production and subsequent stimulation of TP receptors. These findings have important implications in diseases associated with loss of NO signaling such as stroke; where inhibition of sEH and/or isoprostane formation may of benefit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: The search for agents that are capable of preventing restenosis and reduce the risk of late thrombosis is of utmost importance. In this study we aim to evaluate the in vitro effects of ibuprofen on proliferation and migration of human coronary artery smooth muscle cells (HCASMCs) and on human coronary artery endothelial cells (HCAECs) migration. Methods: Cell proliferation was evaluated by direct cell counting using trypan blue exclusion. Cell migration was assessed by wound healing “scratch” assay and by time lapse video-microscopy. Protein expression was assessed by immunoblotting, and morphological changes were studied by immunocytochemistry. The involvement of the PPARγ pathway was studied with the selective agonist troglitazone, and the use of highly selective antagonists of PPARγ such as PGF2α and GW9662. Results: We demonstrate that ibuprofen inhibits proliferation and migration of HCASMCs and induces a switch in HCASMCs towards a differentiated and contractile phenotype, and that these effects are mediated through the PPARγ pathway. Importantly we also show that the effects of ibuprofen are cell type specific as it does not affect migration and proliferation of endothelial cells. Conclusions: Taken together, our results suggest that ibuprofen could be an effective drug for the development of novel drug eluting stents, which could lead reduced rates of restenosis and potentially other complications of DES stent implantation.