10 resultados para Carnegie, Andrew, 1835-1919.

em CentAUR: Central Archive University of Reading - UK


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interwar Britain witnessed the rapid rise of road transport as a serious competitor to the railways. This article examines road–rail competition for freight traffic. It demonstrates that, contrary to previous accounts—which have been highly critical of the railway companies—their failure to prevent rapid loss of traffic to the roads was the inevitable consequence of the regulatory framework under which the railways had been returned to private control in 1921. Given the constraints imposed by this framework, price competition with road hauliers would have further depressed railway company profits. Railway policy thus concentrated on pressing for a revision of the legislative framework governing road–rail competition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Earth’s fair weather atmospheric electric field shows, in clean air, an average daily variation which follows universal time, globally independent of the measurement position. This single diurnal cycle variation (maximum around 19UT and minimum around 03UT) is widely known as the Carnegie curve, after the geophysical survey vessel of the Carnegie Institution of Washington on which the original measurement campaigns demonstrating the universal time variation were undertaken. The Carnegie curve’s enduring importance is in providing a reference variation against which atmospheric electricity measurements are still compared; it is believed to originate from regular daily variations in atmospheric electrification associated with the different global disturbed weather regions. Details of the instrumentation, measurement principles and data obtained on the Carnegie’s seventh and final cruise are reviewed here, also deriving new harmonic coefficients allowing calculation of the Carnegie curve for different seasons. The additional harmonic analysis now identifies changes in the phasing of the maximum and minimum in the Carnegie curve, which shows a systematic seasonal variation, linked to the solstices and equinoxes, respectively.