43 resultados para Cardiovascular Health Catch
em CentAUR: Central Archive University of Reading - UK
Resumo:
This report summarises a workshop convened by the UK Food Standards Agency (FSA) on 11 September 2006 to review the results of three FSA-funded studies and other recent research on effects of the dietary n-6:n-3 fatty acid ratio on cardiovascular health. The objective of this workshop was to reach a clear conclusion on whether or not it was worth funding any further research in this area. On the basis of this review of the experimental evidence and on theoretical grounds, it was concluded that the n-6:n-3 fatty acid ratio is not a useful concept and that it distracts attention away from increasing absolute intakes of long-chain n-3 fatty acids which have been shown to have beneficial effects on cardiovascular health. Other markers of fatty acid intake, that more closely relate to physiological function, may be more useful.
Resumo:
Data on the potential health benefits of dietary flavanols and procyanidins, especially in the context of cardiovascular health, are considerable and continue to accumulate. Significant progress has been made in flavanol analytics and the creation of phytonutrient-content food databases, and novel data emanated from epidemiological investigations as well as dietary intervention studies. However, a comprehensive understanding of the pharmacological properties of flavanols and procyanidins, including their precise mechanisms of action in vivo, and a conclusive, consensus-based accreditation of a causal relationship between intake and health benefits in the context of primary and secondary cardiovascular disease prevention is still outstanding. Thus, the objective of this review is to identify and discuss key questions and gaps that will need to be addressed in order to conclusively demonstrate whether or not dietary flavanols and procyanidins have a role in preventing, delaying the onset of, or treating cardiovascular diseases, and thus improving human life expectancy and quality of life.
Resumo:
This report summarises the proceedings of a meeting held by the Food and Health Forum at the Royal Society of Medicine, London, on 12 October 2011. The objective of the meeting was to highlight nutritional strategies targeted at cardiovascular health. This included a review of the effects of various foods, nutrients and ingredients on maintenance of healthy cholesterol levels, endothelial function and blood pressure
Resumo:
Cardiovascular disease (CVD) prevalence at a global level is predicted to increase substantially over the next decade due to the increasing ageing population and incidence of obesity. Hence, there is an urgent requirement to focus on modifiable contributors to CVD risk, including a high dietary intake of saturated fatty acids (SFA). As an important source of SFA in the UK diet, milk and dairy products are often targeted for SFA reduction. The current paper acknowledges that milk is a complex food and that simply focusing on the link between SFA and CVD risk overlooks the other beneficial nutrients of dairy foods. The body of existing prospective evidence exploring the impact of milk and dairy consumption on risk factors for CVD is reviewed. The current paper highlights that high milk consumption may be beneficial to cardiovascular health, while illustrating that the evidence is less clear for cheese and butter intake. The option of manipulating the fatty acid profile of ruminant milk is discussed as a potential dietary strategy for lowering SFA intake at a population level. The review highlights that there is a necessity to perform more well-controlled human intervention-based research that provides a more holistic evaluation of fat-reduced and fat-modified dairy consumption on CVD risk factors including vascular function, arterial stiffness, postprandial lipaemia and markers of inflammation. Additionally, further research is required to investigate the impact of different dairy products and the effect of the specific food matrix on CVD development.
Resumo:
There is now considerable scientific evidence that a diet rich in fruits and vegetables can improve human health and protect against chronic diseases. However, it is not clear whether different fruits and vegetables have distinct beneficial effects. Apples are among the most frequently consumed fruits and a rich source of polyphenols and fiber. A major proportion of the bioactive components in apples, including the high molecular weight polyphenols, escape absorption in the upper gastrointestinal tract and reach the large intestine relatively intact. There, they can be converted by the colonic microbiota to bioavailable and biologically active compounds with systemic effects, in addition to modulating microbial composition. Epidemiological studies have identified associations between frequent apple consumption and reduced risk of chronic diseases such as cardiovascular disease. Human and animal intervention studies demonstrate beneficial effects on lipid metabolism, vascular function and inflammation but only a few studies have attempted to link these mechanistically with the gut microbiota. This review will focus on the reciprocal interaction between apple components and the gut microbiota, the potential link to cardiovascular health and the possible mechanisms of action.
Resumo:
Cardiovascular diseases (CVD) are the leading cause of mortality and morbidity worldwide. One of the key dietary recommendations for CVD prevention is reduction of saturated fat intake. Yet despite milk and dairy foods contributing on average 27 % of saturated fat intake in the UK diet, evidence from prospective cohort studies does not support a detrimental effect of milk and dairy foods on risk of CVD. This paper provides a brief overview of the role of milk and dairy products in the diets of UK adults, and will summarise the evidence in relation to the effects of milk and dairy consumption on CVD risk factors and mortality. The majority of prospective studies and meta-analyses examining the relationship between milk and dairy product consumption and risk of CVD show that milk and dairy products, excluding butter, are not associated with detrimental effects on CVD mortality or risk biomarkers, that include serum LDL cholesterol. In addition, there is increasing evidence that milk and dairy products are associated with lower blood pressure and arterial stiffness. These apparent benefits of milk and dairy foods have been attributed to their unique nutritional composition, and suggest that the elimination of milk and dairy may not be the optimum strategy for CVD risk reduction.
Resumo:
Background: Epidemiological data suggest inverse associations between citrus flavanone intake and cardiovascular disease (CVD) risk. However, insufficient randomized controlled trial (RCT) data limit our understanding of mechanisms by which flavanones and their metabolites potentially reduce cardiovascular (CV) risk factors. Objective: We examined the effects of orange juice or a dose-matched hesperidin supplement on plasma concentrations of established and novel flavanone metabolites and their effects on CV risk biomarkers in men at moderate CVD risk. Methods: In an acute, randomized, placebo-controlled crossover trial, 16 fasted participants (aged 51-69 y) received orange juice or a hesperidin supplement (both providing 320 mg hesperidin) or control (all matched for sugar and vitamin C content). At baseline and 5 h post-intake, endothelial function (primary outcome), further CV risk biomarkers (i.e. blood pressure, arterial stiffness, cardiac autonomic function, platelet activation and NADPH oxidase gene expression) and plasma flavanone metabolites were assessed. Prior to each intervention, a diet low in flavonoids, nitrate/nitrite, alcohol and caffeine was followed and a standardized low-flavonoid evening meal was consumed. Results: Orange juice intake significantly elevated mean (± SEM) plasma concentrations of 8 flavanone (1.75 ± 0.35 µmol/L, P < 0.0001) and 15 phenolic metabolites (13.27 ± 2.22 µmol/L, P < 0.0001) compared with control at 5 h post-consumption. Despite increased plasma flavanone and phenolic metabolite concentrations, CV risk biomarkers were unaltered. Following hesperidin supplement intake, flavanone metabolites were not different to control, suggesting altered absorption/metabolism compared with the orange juice matrix. Conclusions: Following single-dose flavanone intake within orange juice, we detected circulating flavanone and phenolic metabolites collectively reaching a concentration of 15.20 ± 2.15 µmol/L but observed no effect on CV risk biomarkers. Longer-duration RCTs are required to further examine the previous associations between higher flavanone intakes and improved cardiovascular health and to ascertain the relative importance of food matrix and flavanone-derived phenolic metabolites.
Resumo:
Cocoa flavanol (CF) intake improves endothelial function in patients with cardiovascular risk factors and disease. We investigated the effects of CF on surrogate markers of cardiovascular health in low risk, healthy, middle-aged individuals without history, signs or symptoms of CVD. In a 1-month, open-label, one-armed pilot study, bi-daily ingestion of 450 mg of CF led to a time-dependent increase in endothelial function (measured as flow-mediated vasodilation (FMD)) that plateaued after 2 weeks. Subsequently, in a randomised, controlled, double-masked, parallel-group dietary intervention trial (Clinicaltrials.gov: NCT01799005), 100 healthy, middle-aged (35–60 years) men and women consumed either the CF-containing drink (450 mg) or a nutrient-matched CF-free control bi-daily for 1 month. The primary end point was FMD. Secondary end points included plasma lipids and blood pressure, thus enabling the calculation of Framingham Risk Scores and pulse wave velocity. At 1 month, CF increased FMD over control by 1·2 % (95 % CI 1·0, 1·4 %). CF decreased systolic and diastolic blood pressure by 4·4 mmHg (95 % CI 7·9, 0·9 mmHg) and 3·9 mmHg (95 % CI 6·7, 0·9 mmHg), pulse wave velocity by 0·4 m/s (95 % CI 0·8, 0·04 m/s), total cholesterol by 0·20 mmol/l (95 % CI 0·39, 0·01 mmol/l) and LDL-cholesterol by 0·17 mmol/l (95 % CI 0·32, 0·02 mmol/l), whereas HDL-cholesterol increased by 0·10 mmol/l (95 % CI 0·04, 0·17 mmol/l). By applying the Framingham Risk Score, CF predicted a significant lowering of 10-year risk for CHD, myocardial infarction, CVD, death from CHD and CVD. In healthy individuals, regular CF intake improved accredited cardiovascular surrogates of cardiovascular risk, demonstrating that dietary flavanols have the potential to maintain cardiovascular health even in low-risk subjects.
Resumo:
Increasing recognition of the importance of the long-chain n-3 PUFA, EPA and DHA, to cardiovascular health, and in the case of DHA to normal neurological development in the fetus and the newborn, has focused greater attention on the dietary supply of these fatty acids. The reason for low intakes of EPA and DHA in most developed countries (0 center dot 1-0 center dot 5hairspg/d) is the low consumption of oily fish, the richest dietary source of these fatty acids. An important question is whether dietary intake of the precursor n-3 fatty acid, alpha-linolenic acid (alpha LNA), can provide sufficient amounts of tissue EPA and DHA by conversion through the n-3 PUFA elongation-desaturation pathway. alpha LNA is present in marked amounts in plant sources, including green leafy vegetables and commonly-consumed oils such as rape-seed and soyabean oils, so that increased intake of this fatty acid would be easier to achieve than via increased fish consumption. However, alpha LNA-feeding studies and stable-isotope studies using alpha LNA, which have addressed the question of bioconversion of alpha LNA to EPA and DHA, have concluded that in adult men conversion to EPA is limited (approximately 8%) and conversion to DHA is extremely low (< 0 center dot 1%). In women fractional conversion to DHA appears to be greater (9%), which may partly be a result of a lower rate of utilisation of alpha LNA for beta-oxidation in women. However, up-regulation of the conversion of EPA to DHA has also been suggested, as a result of the actions of oestrogen on Delta 6-desaturase, and may be of particular importance in maintaining adequate provision of DHA in pregnancy. The effect of oestrogen on DHA concentration in pregnant and lactating women awaits confirmation.
Resumo:
Nutrigenetics and personalised nutrition are components of the concept that in the future genotyping will be used as a means of defining dietary recommendations to suit the individual. Over the last two decades there has been an explosion of research in this area, with often conflicting findings reported in the literature. Reviews of the literature in the area of apoE genotype and cardiovascular health, apoA5 genotype and postprandial lipaemia and perilipin and adiposity are used to demonstrate the complexities of genotype-phenotype associations and the aetiology of apparent between-study inconsistencies in the significance and size of effects. Furthermore, genetic research currently often takes a very reductionist approach, examining the interactions between individual genotypes and individual disease biomarkers and how they are modified by isolated dietary components or foods. Each individual possesses potentially hundreds of 'at-risk' gene variants and consumes a highly-complex diet. In order for nutrigenetics to become a useful public health tool, there is a great need to use mathematical and bioinformatic tools to develop strategies to examine the combined impact of multiple gene variants on a range of health outcomes and establish how these associations can be modified using combined dietary strategies.
Resumo:
Background and aims: Epidemiological evidence indicates that cereal dietary fibre (DF) may have several cardiovascular health benefits. The underlying mechanisms have not yet been elucidated. Here, the potential nutritional effects of physico-chemical. properties modifications of durum wheat dietary fibre (DWF) induced by enzyme treatment have been investigated. Methods and results: The conversion of the highly polymerised insoluble dietary fibre into soluble feruloyl oligosaccharides of DWF was achieved by a tailored enzymatic treatment. The in vitro fermentation and release of ferulic acid by intestinal microbiota from DWF before and after the enzymatic treatment were assessed using a gut model validated to mimic the human colonic microbial environment. Results demonstrated that, compared to DWF, the enzyme-treated DWF (ETD-WF) stimulated the growth of bifidobacteria and lactobacilli. Concurrently, the release of free ferulic acid by ET-DWF was almost three times higher respect to the control. No effect on the formation of short chain fatty acids was observed. Conclusions: The conversion of insoluble dietary fibre from cereals into soluble dietary fibre generated a gut microbial fermentation that supported bifidobacteria and lactobacilli. The concurrent increase in free ferulic acid from the enzyme-treated DWF might result in a higher plasma ferulic acid concentration which could be one of the reasons for the health benefits reported for dietary fibre in cardiovascular diseases. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The deleterious impact of cigarette smoking on cardiovascular health may be in part attributable to a free radical mediated proinflammatory response in circulating monocytes. In the current investigation, the impact of vitamin C supplementation on monocyte gene expression was determined in apoE4 smokers versus non-smokers. A total of 10 smokers and 11 non-smokers consumed 60 mg/day of vitamin C for four weeks and a fasting blood sample was taken at baseline and post-intervention for the determination of plasma vitamin C and monocyte gene expression profiles using cDNA array and real time PCR. In apoE4 smokers, supplementation resulted in a 43% increase in plasma vitamin C concentrations. Furthermore, a number of genes were differentially expressed more than 2-fold in response to treatment, including a downregulation of the proinflammatory mediators tumor necrosis factor (TNF) beta, TNF receptor, neurotrophin-3 growth factor receptor, and monocyte chemoattractant protein I receptor. The study has identified a number of molecular mechanisms underlying the benefit of vitamin C supplementation in smokers. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Dietary isoflavones are currently receiving much attention because of their potential role in preventing coronary artery disease and other chronic diseases. Accumulating evidence from cell culture and laboratory animal experiments indicates that isoflavones have the potential to prevent or delay atherogenesis. Suggested mechanisms of action include: a reduction in low-density lipoprotein (LDL) cholesterol and a potential reduction in the susceptibility of the LDL particle to oxidation; (2) an improvement in vascular reactivity; (3) an inhibition of pro-inflammatory cytokines, cell adhesion proteins and nitric oxide (NO) production; and (4) an inhibition of platelet aggregation. These mechanisms are consistent with the epidemiological evidence that a high consumption of isoflavone-rich soy products is associated with a reduced incidence of coronary artery disease. Biological effects of isoflavones are dependent on many factors, including dose consumed, duration of use, protein-binding affinity, and an individual's metabolism or intrinsic oestrogenic state. Further clinical studies are necessary to determine the potential health effects of isoflavones in specific population groups as we currently know little about age-related differences in exposure to these compounds and there are few guidelines on optimal dose for cardiovascular health benefits.
Resumo:
The UK Food Standards Agency convened a group of expert scientists to review current research investigating whether n-3 polyunsaturated fatty acids (PUFA) from plant oils (a-linolenic acid; ALA) were as beneficial to cardiovascular health as the n-3 PUFA from the marine oils, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The workshop also aimed to establish priorities for future research. Dietary intake of ALA has been associated with a beneficial effect on CHD; however, the results from studies investigating the effects of ALA supplementation on CHD risk factors have proved equivocal. The studies presented as part of the present workshop suggested little, if any, benefit of ALA, relative to linoleic acid, on risk factors for cardiovascular disease; the effects observed with fish-oil supplementation were not replicated by ALA supplementation. There is a need, therefore, to first prove the efficacy of ALA supplementation on cardiovascular disease, before further investigating effects on cardiovascular risk factors. The workshop considered that a beneficial effect of ALA on the secondary prevention of CHD still needed to be established, and there was no reason to look further at existing CHD risk factors in relation to ALA supplementation. The workshop also highlighted the possibility of feeding livestock ALA-rich oils to provide a means of increasing the dietary intake in human consumers of EPA and DHA.
Resumo:
Epidemiological studies have shown an inverse relationship between risk of CVD and intake of whole grain (WG)-rich food. Regular consumption of breakfast cereals can provide not only an increase in dietary WG but also improvements to cardiovascular health. Various mechanisms have been proposed, including prebiotic modulation of the colonic microbiota. In the present study, the prebiotic activity of a maize-derived WG cereal (WGM) was evaluated in a double-blind, placebo-controlled human feeding study (n 32). For a period of 21 d, healthy men and women, mean age 32 (sd 8) years and BMI 23·3 (sd 0·58) kg/m2, consumed either 48 g/d WG cereal (WGM) or 48 g placebo cereal (non-whole grain (NWG)) in a crossover fashion. Faecal samples were collected at five points during the study on days 0, 21, 42, 63 and 84 (representing at baseline, after both treatments and both wash-out periods). Faecal bacteriology was assessed using fluorescence in situ hybridisation with 16S rRNA oligonucleotide probes specific for Bacteroides spp., Bifidobacterium spp., Clostridium histolyticum/perfringens subgroup, Lactobacillus–Enterococcus subgroup and total bacteria. After 21 d consumption of WGM, mean group levels of faecal bifidobacteria increased significantly compared with the control cereal (P = 0·001). After a 3-week wash-out period, bifidobacterial levels returned to pre-intervention levels. No statistically significant changes were observed in serum lipids, glucose or measures of faecal output. In conclusion, this WG maize-enriched breakfast cereal mediated a bifidogenic modulation of the gut microbiota, indicating a possible prebiotic mode of action