60 resultados para Carboxylate groups
em CentAUR: Central Archive University of Reading - UK
Resumo:
Three new polynuclear copper(II) complexes of 2-picolinic acid (Hpic), {[Cu-2(pic)(3)(H2O)]ClO4}(n) (1), {[Cu-2(pic)(3)(H2O)]BF4}(n) (2), and [Cu-2(pic)3(H2O)(2)(NO3)](n) (3), have been synthesized by reaction of the "metalloligand" [Cu-(pic)(2)] with the corresponding copper(II) salts. The compounds are characterized by single-crystal X-ray diffraction analyses and variable-temperature magnetic measurements. Compounds 1 and 2 are isomorphous and crystallize in the triclinic system with space group P (1) over bar, while 3 crystallizes in the monoclinic system with space group P2(1)/n. The structural analyses reveal that complexes 1 and 2 are constructed by "fish backbone" chains through syn-anti (equatorial-equatorial) carboxylate bridges, which are linked to one another by syn-anti (equatorial-axial) carboxylate bridges, giving rise to a rectangular grid-like two-dimensional net. Complex 3 is formed by alternating chains of syn-anti carboxylate-bridged copper(II) atoms, which are linked together by strong H bonds involving coordinated nitrate ions and water molecules and uncoordinated oxygen atoms from carboxylate groups. The different coordination ability of the anions along with their involvement in the H-bonding network seems to be responsible for the difference in the final polymeric structures. Variable-temperature (2-300 K) magnetic susceptibility measurement shows the presence of weak ferromagnetic coupling for all three complexes that have been fitted with a fish backbone model developed for 1 and 2 (J = 1.74 and 0.99 cm(-1); J' = 0.19 and 0.25 cm(-1), respectively) and an alternating chain model for 3 (J = 1.19 cm(-1) and J' = 1.19 cm(-1)).
Resumo:
The new dioxatetraazamacrocycle (L-1) was synthesized by a 2 + 2 condensation and characterized. Stability constants of its copper(II) complexes were determined by spectrophotometry in DMSO at 298.2 K in 0. 10 mol dm(-3) KClO4. Mainly dinuclear complexes are formed and the presence of mononuclear species is dependent on the counterion (Cl- or ClO4-). The association constants of the dinuclear copper(II) complexes with dicarboxylate anions [oxalate (oxa(2-)), malonate (mal(2-)), succinate (suc(2-)), and glutarate (glu(2-))] were also determined by spectrophotometry at 298.2 K in DMSO, and it was found that values decrease with an increase of the alkyl chain between the carboxylate groups. X-Band EPR spectra of the dicopper(II) complexes and of their cascade species in frozen DMSO exhibit dipole-dipole coupling, and their simulation, together with their UV-vis spectra, showed that the copper centres of the complexes in solution had square pyramidal geometries though with different distortions. From the experimental data, it was also possible to predict the Cu...Cu distances, the minimum being found at 6.4 angstrom for the (Cu2LCl4)-Cl-1 complex and then successively this distance slightly increases when the chloride anions are replaced by dicarboxylate anions, from 6.6 angstrom for oxa(2-) to 7.8 for glu(2-). The crystal structures of the dinuclear copper cascade species with oxa(2-) and suc(2-) were determined and showed one anion bridging both copper centres and Cu...Cu distances of 5.485(7) angstrom and 6.442(8) angstrom, respectively.
Resumo:
The hydrothermal reactions of Ni(NO3)(2).6H(2)O, disodium fumarate (fum) and 1,2-bis(4-pyridyl)ethane (bpe)/1,3-bis(4-pyridyl) propane (bpp) in aqueous-methanol medium yield one 3-D and one 2-D metal-organic hybrid material, [Ni(fum)(bpe)] (1) and [Ni(fum)(bpp)(H2O)] (2), respectively. Complex 1 possesses a novel unprecedented structure, the first example of an "unusual mode" of a five-fold distorted interpenetrated network with metal-ligand linkages where the four six-membered windows in each adamantane-type cage are different. The structural characterization of complex 2 evidences a buckled sheet where nickel ions are in a distorted octahedral geometry, with two carboxylic groups, one acting as a bis-chelate, the other as a bis-monodentate ligand. The metal ion completes the coordination sphere through one water molecule and two bpp nitrogens in cis position. Variable-temperature magnetic measurements of complexes 1 and 2 reveal the existence of very weak antiferromagnetic intramolecular interactions and/or the presence of single-ion zero field splitting (D) of isolated Ni-II ions in both the compounds. Experimentally, both the J parameters are close, comparable and very small. Considering zero-field splitting of Ni-II, the calculated D values are in agreement with values reported in the literature for Ni-II ions. Complex 3, [{Co(phen)}(2)(fum)(2)] (phen=1,10-phenanthroline) is obtained by diffusing methanolic solution of 1,10-phenanthroline on an aqueous layer of disodium fumarate and Co(NO3)(2).6H(2)O. It consists of dimeric Co-II(phen) units, doubly bridged by carboxylate groups in a distorted syn-syn fashion. These fumarate anions act as bis-chelates to form corrugated sheets. The 2D layer has a (4,4) topology, with the nodes represented by the centres of the dimers. The magnetic data were fitted ignoring the very weak coupling through the fumarate pathway and using a dimer model.
Resumo:
Four new cadmium(II) complexes [Cd-2(bz)(4)(H2O)(4)(mu 2-hmt)]center dot Hbz center dot H2O (1), [Cd-3(bz)(6)(H2O)(6)(mu 2-hmt)(2)]center dot 6H(2)O (2), [Cd(pa)(2)(H2O)(mu(2)-hmt)](n) (3), and {[Cd-3(ac)(6)(H2O)(3)(mu(3)-hmt)(2)]center dot 6H(2)O}(n) (4) with hexamine (hmt) and monocarboxylate ions, benzoate (bz), phenylacetate (pa), or acetate (ac) have been synthesized and characterized structurally. Structure determinations reveal that 1 is dinuclear, 2 is trinuclear, 3 is a one-dimensional (1D) infinite chain, and 4 is a two-dimensional (2D) polymer with fused hexagonal rings consisting of Cd-II and hmt. All the Cd-II atoms in the four complexes (except one CdII in 2) possess seven-coordinate pentagonal bipyramidal geometry with the various chelating bidentate carboxylate groups in equatorial sites. One of the CdII ions in 2, a complex that contains two monodentate carboxylates is in a distorted octahedral environment. The bridging mode of hmt is mu 2- in complexes 1-3 but is mu 3- in complex 4. In all complexes, there are significant numbers of H-bonds, C-H/pi, and pi-pi interactions which play crucial roles in forming the supramolecular networks. The importance of the noncovalent interactions in terms of energies and geometries has been analyzed using high level ab initio calculations. The effect of the cadmium coordinated to hmt on the energetic features of the C-H/pi interaction is analyzed. Finally, the interplay between C-H/pi and pi-pi interactions observed in the crystal structure of 3 is also studied.
Resumo:
We report the synthesis and evaluation of a novel hydrophilic 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) ligand containing carboxylate groups as a selective aqueous complexing agent for the minor actinides over lanthanides. The novel ligand is able to complex and separate Am(III) from Eu(III) in alkaline solutions selectively.
Resumo:
The positions of atoms in and around acetate molecules at the rutile TiO2(110) interface with 0.1 M acetic acid have been determined with a precision of ±0.05 Å. Acetate is used as a surrogate for the carboxylate groups typically employed to anchor monocarboxylate dye molecules to TiO2 in dye-sensitised solar cells (DSSC). Structural analysis reveals small domains of ordered (2 x 1) acetate molecules, with substrate atoms closer to their bulk terminated positions compared to the clean UHV surface. Acetate is found in a bidentate bridge position, binding through both oxygen atoms to two five-fold titanium atoms such that the molecular plane is along the [001] azimuth. Density functional theory calculations provide adsorption geometries in excellent agreement with experiment. The availability of these structural data will improve the accuracy of charge transport models for DSSC.
Resumo:
In this paper, the issues that arise in multi-organisational collaborative groups (MOCGs) in the public sector are discussed and how a technology-based group support system (GSS) could assist individuals within these groups. MOCGs are commonly used in the public sector to find solutions to multifaceted social problems. Finding solutions for such problems is difficult because their scope is outside the boundary of a single government agency. The standard approach to solving such problems is collaborative involving a diverse range of stakeholders. Collaborative working can be advantageous but it also introduces its own pressures. Conflicts can arise due to the multiple contexts and goals of group members and the organisations that they represent. Trust, communication and a shared interface are crucial to making any significant progress. A GSS could support these elements.
Resumo:
Direct numerical simulations of turbulent flow over regular arrays of urban-like, cubical obstacles are reported. Results are analysed in terms of a formal spatial averaging procedure to enable interpretation of the flow within the arrays as a canopy flow, and of the flow above as a rough wall boundary layer. Spatial averages of the mean velocity, turbulent stresses and pressure drag are computed. The statistics compare very well with data from wind-tunnel experiments. Within the arrays the time-averaged flow structure gives rise to significant 'dispersive stress' whereas above the Reynolds stress dominates. The mean flow structure and turbulence statistics depend significantly on the layout of the cubes. Unsteady effects are important, especially in the lower canopy layer where turbulent fluctuations dominate over the mean flow.
Resumo:
A Cu-II complex of protonated 4,4'-bipyridine (Hbyp) and 2-picolinate (pic), [Cu-2(pic)(3)(Hbyp)(H2O)(ClO4)(2)], has been synthesised and characterised by single-crystal X-ray analysis. The structure consists of two copper atoms that have different environments, bridged by a carboxylate group. The equatorial plane is formed by the two bidentate picolinate groups in one Cu-II, and one picolinate, one monodentate 4,4'-bipyridyl ligand and a water molecule in the other. Each copper atom is also weakly bonded to a perchlorate anion in an axial position. One of the coordinated perchlorate groups displays anion-pi interaction with the coordinated pyridine ring. The noncoordinated carboxylate oxygen is involved in lone-pair (l.p.)-pi interaction with the protonated pyridine ring. In addition there are pi-pi and H-bonding interactions in the structure. Bader's theory of "atoms in molecules" (AIM) is used to characterise the anion-pi and l.p.-pi interactions observed in the solid state. A high-level ab initio study (RI-MP2/aug-cc-pVTZ level of theory) has been performed to analyse the anion-pi binding affinity of the pyridine ring when it is coordinated to a transition metal and also when the other pyridine ring of the 4,4'-bipyridine moiety is protonated. Theoretical investigations support the experimental findings of an intricate network of intermolecular interactions, which is characterised in the studied complex, and also indicate that protonation as well as coordination to the transition metal have important roles in influencing the pi-binding properties of the aromatic ring. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)
Resumo:
Conjugate addition of lithium dibenzylamide to tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate occurs with high levels of stereocontrol, with preferential addition of lithium dibenzylamide to the face of the cyclic alpha,beta-unsaturated acceptor anti- to the 3-methyl substituent. High levels of enantiorecognition are observed between tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate and an excess of lithium (+/-)-N-benzyl-N-alpha-methylbenzylamide (10 eq.) (E > 140) in their mutual kinetic resolution, while the kinetic resolution of tert-butyl (+/-)-3-methylcyclopentene-1-carboxylate with lithium (S)-N-benzyl-N-alpha-methylbenzylamide proceeds to give, at 51% conversion, tert-butyl (1R, 2S, 3R,alphaS)-3-methyl-2-N-benzyl-N-alpha-methylbenzylaminocyclopentane-1-c arboxylate consistent with E > 130, and in 39% yield and 99 +/- 0.5% de after purification. Subsequent deprotection by hydrogenolysis and ester hydrolysis gives (1R, 2S, 3R)-3-methylcispentacin in > 98% de and 98 +/- 1% ee. Selective epimerisation of tert-butyl (1R, 2S, 3R, alphaS)-3-methyl-2-N- benzyl-N-alpha-methylbenzylaminocyclopentane-1-carboxylate by treatment with (KOBu)-Bu-t in (BuOH)-Bu-t gives tert-butyl (1S, 2S, 3R, alphaS)-3-methyl-2-N-benzyl-N-alpha-methylbenzylaminocyclopentane-1-carb oxylate in quantitative yield and in > 98% de, with subsequent deprotection by hydrogenolysis and ester hydrolysis giving (1S, 2S, 3R)-3-methyltranspentacin hydrochloride in > 98% de and 97 +/- 1% ee.
Resumo:
The tetraprotonated form of the dioxatetraazamacrocycle, 6,19-dioxa-3,9,16,22-tetraaza[22.2.2.2(11,14)]-triaconta-1(26),11,13,24, 27,29-hexaene, (H4L1)(4+), was used as the receptor for binding studies with carboxylate anionic substrates of different shapes, sizes, and charges [succinate (suc(2-)), cyclo- hexanetricarboxylate (cta(3-)), phthalate (ph(2-)), isophthalate (iph(2-)), terephthalate (tph(2-)), and benezenetricarboxylate (btc(3-))]. Association constants were determined by potentiometry in aqueous solution at 298.2 K and 0.10 M KCl and by H-1 NMR titration in D2O. The strongest association was found for the btc3- anion at 5-7 pH region. From both techniques it was possible to establish the binding preference trend of the receptor for the different substrates, and the H-1 NMR spectroscopy gave important suggestions about the type of interactions between partners and the location of the substrates in the supramolecular entities formed. The effective binding constants at pH 6 follow the order: btc(3-)>iph(2-)>cta(3-) =ph(2-)>tph(2-)>suc(2-). All the studies suggest that the anionic substrates bind to the receptor via N-H center dot center dot center dot O = C hydrogen bonds and electrostatic interactions, and the aromatic substrates can also establish pi-pi stacking interactions. The crystal structures of (H4L1)(4+) and its supramolecular assemblies with ph(2-) and tph(2-) were determined by X-ray diffraction. The last two structures showed that the association process in solid state occurs via multiple N-H center dot center dot center dot O = C hydrogen bonds with the anionic substrate located outside the macrocyclic cavity of the receptor. Molecular dynamics simulations carried out for the association of (H4L1)(4+) with tph(2-) and btC(3-) in water solution established at atomic level the existence of all interactions suggested by the experimental studies, which act cooperatively in the binding process. Furthermore, the binding free energies were estimated and the values are in agreement with the experimental ones, indicating that the binding of these two anionic substrates occurs into the receptor cavity. However, the tph(2-) has also propensity to leave the macrocyclic cavity and its molecular recognition can also happen at the top of the receptor. (C) 2008 Elsevier Ltd. All rights reserved.