11 resultados para Carbon oxidation
em CentAUR: Central Archive University of Reading - UK
Resumo:
We have reported earlier that modification of commercial graphite Pt-supported catalysts with Teflon fluorinated polymeric coating of a very strong hydrophobic nature can significantly improve catalytic activity for aerial oxidation of water-insoluble alcohols such as anthracene methanol in supercritical carbon dioxide (scCO(2)). Thus, this paper presents some further characterization of these new catalyst materials and the working fluid phase during the catalysis. Using the same Teflon-modified metal catalysts, this paper addresses the oxidation of another water-insoluble alcohol molecule, m-hydrobenzoin in scCO(2). It is found that conversion and product distribution of this diol oxidation critically depend on the temperature and pressure of the scCO(2) used, which suggest the remarkable solvent properties of the scCO(2) under these unconventional oxidation conditions. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Stabilized water droplet dispersed in supercritical carbon dioxide fluid is demonstrated to be an excellent alternative solvent system to acetic acid for air oxidation of a number of alkyl aromatic hydrocarbons using Co(II) species at mild conditions.
Resumo:
Stabilized nano-sized water droplet carrying water-soluble Co2+ species is employed as a new catalyst system for the oxidation of the alkyl aromatics in the presence of a fluorinated surfactant. This stable system contains no labile C-H structure and can facilitate excellent mixing of catalytic Co(II)/NaBr species, hydrocarbon substrates and oxygen in supercritical carbon dioxide fluid, which is demonstrated to be an excellent alternative solvent system to acetic acid or nitric acid for air oxidation of a number of alkyl aromatic hydrocarbons using Co(II) species at mild conditions. As a result, potential advantages of this 'greener' catalytic method including safer operation, easier separation and purification, higher catalytic activity with selectivity and without using corrosive or oxidation unstable solvent are therefore envisaged.
Resumo:
Using the virtual porous carbon model proposed by Harris et al, we study the effect of carbon surface oxidation on the pore size distribution (PSD) curve determined from simulated Ar, N(2) and CO(2) isotherms. It is assumed that surface oxidation is not destructive for the carbon skeleton, and that all pores are accessible for studied molecules (i.e., only the effect of the change of surface chemical composition is studied). The results obtained show two important things, i.e., oxidation of the carbon surface very slightly changes the absolute porosity (calculated from the geometric method of Bhattacharya and Gubbins (BG)); however, PSD curves calculated from simulated isotherms are to a greater or lesser extent affected by the presence of surface oxides. The most reliable results are obtained from Ar adsorption data. Not only is adsorption of this adsorbate practically independent from the presence of surface oxides, but, more importantly, for this molecule one can apply the slit-like model of pores as the first approach to recover the average pore diameter of a real carbon structure. For nitrogen, the effect of carbon surface chemical composition is observed due to the quadrupole moment of this molecule, and this effect shifts the PSD curves compared to Ar. The largest differences are seen for CO2, and it is clearly demonstrated that the PSD curves obtained from adsorption isotherms of this molecule contain artificial peaks and the average pore diameter is strongly influenced by the presence of electrostatic adsorbate-adsorbate as well as adsorbate-adsorbent interactions.
Synergetic effect of carbon nanopore size and surface oxidation on CO2 capture from CO2/CH4 mixtures
Resumo:
We have studied the synergetic effect of confinement (carbon nanopore size) and surface chemistry (the number of carbonyl groups) on CO2 capture from its mixtures with CH4 at typical operating conditions for industrial adsorptive separation (298 K and compressed CO2CH4 mixtures). Although both confinement and surface oxidation have an impact on the efficiency of CO2/CH4 adsorptive separation at thermodynamics equilibrium, we show that surface functionalization is the most important factor in designing an efficient adsorbent for CO2 capture. Systematic Monte Carlo simulations revealed that adsorption of CH4 either pure or mixed with CO2 on oxidized nanoporous carbons is only slightly increased by the presence of functional groups (surface dipoles). In contrast, adsorption of CO2 is very sensitive to the number of carbonyl groups, which can be examined by a strong electric quadrupolar moment of CO2. Interestingly, the adsorbed amount of CH4 is strongly affected by the presence of the co-adsorbed CO2. In contrast, the CO2 uptake does not depend on the molar ratio of CH4 in the bulk mixture. The optimal carbonaceous porous adsorbent used for CO2 capture near ambient conditions should consist of narrow carbon nanopores with oxidized pore walls. Furthermore, the equilibrium separation factor was the greatest for CO2/CH4 mixtures with a low CO2 concentration. The maximum equilibrium separation factor of CO2 over CH4 of ∼18–20 is theoretically predicted for strongly oxidized nanoporous carbons. Our findings call for a review of the standard uncharged model of carbonaceous materials used for the modeling of the adsorption separation processes of gas mixtures containing CO2 (and other molecules with strong electric quadrupolar moment or dipole moment).
Influence of drought-induced acidification on the mobility of dissolved organic carbon in peat soils
Resumo:
A strong relationship between dissolved organic carbon (DOC) and sulphate (SO42−) dynamics under drought conditions has been revealed from analysis of a 10-year time series (1993–2002). Soil solution from a blanket peat at 10 cm depth and stream water were collected at biweekly and weekly intervals, respectively, by the Environmental Change Network at Moor House-Upper Teesdale National Nature Reserve in the North Pennine uplands of Britain. DOC concentrations in soil solution and stream water were closely coupled, displaying a strong seasonal cycle with lowest concentrations in early spring and highest in late summer/early autumn. Soil solution DOC correlated strongly with seasonal variations in soil temperature at the same depth 4-weeks prior to sampling. Deviation from this relationship was seen, however, in years with significant water table drawdown (>−25 cm), such that DOC concentrations were up to 60% lower than expected. Periods of drought also resulted in the release of SO42−, because of the oxidation of inorganic/organic sulphur stored in the peat, which was accompanied by a decrease in pH and increase in ionic strength. As both pH and ionic strength are known to control the solubility of DOC, inclusion of a function to account for DOC suppression because of drought-induced acidification accounted for more of the variability of DOC in soil solution (R2=0.81) than temperature alone (R2=0.58). This statistical model of peat soil solution DOC at 10 cm depth was extended to reproduce 74% of the variation in stream DOC over this period. Analysis of annual budgets showed that the soil was the main source of SO42− during droughts, while atmospheric deposition was the main source in other years. Mass balance calculations also showed that most of the DOC originated from the peat. The DOC flux was also lower in the drought years of 1994 and 1995, reflecting low DOC concentrations in soil and stream water. The analysis presented in this paper suggests that lower concentrations of DOC in both soil and stream waters during drought years can be explained in terms of drought-induced acidification. As future climate change scenarios suggest an increase in the magnitude and frequency of drought events, these results imply potential for a related increase in DOC suppression by episodic acidification.
Resumo:
Methane is the second most important anthropogenic greenhouse gas in the atmosphere next to carbon dioxide. Its global warming potential (GWP) for a time horizon of 100 years is 25, which makes it an attractive target for climate mitigation policies. Although the methane GWP traditionally includes the methane indirect effects on the concentrations of ozone and stratospheric water vapour, it does not take into account the production of carbon dioxide from methane oxidation. We argue here that this CO2-induced effect should be included for fossil sources of methane, which results in slightly larger GWP values for all time horizons. If the global temperature change potential is used as an alternative climate metric, then the impact of the CO2-induced effect is proportionally much larger. We also discuss what the correction term should be for methane from anthropogenic biogenic sources.
Resumo:
We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas-particle interactions (Poschl-Rudich-Ammann, 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory studies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (carbon-carbon double bonds) can reach chemical lifetimes of many hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (< 10(-10) cm(2) s(-1)). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.
Resumo:
We present the results of a systematic study of the influence of carbon surface oxidation on Dubinin–Astakhov isotherm parameters obtained from the fitting of CO2 adsorption data. Using GCMC simulations of adsorption on realistic VPC models differing in porosity and containing the most frequently occurring carbon surface functionalities (carboxyls, hydroxyls and carbonyls) and their mixtures, it is concluded that the maximum adsorption calculated from the DA model is not strongly affected by the presence of oxygen groups. Unfortunately, the same cannot be said of the remaining two parameters of this model i.e. the heterogeneity parameter (n) and the characteristic energy of adsorption (E0). Since from the latter the pore diameters of carbons are usually calculated, by inverse-type relationships, it is concluded that they are questionable for carbons containing surface oxides, especially carboxyls.
Resumo:
Using grand canonical Monte Carlo simulation we show, for the first time, the influence of the carbon porosity and surface oxidation on the parameters of the Dubinin-Astakhov (DA) adsorption isotherm equation. We conclude that upon carbon surface oxidation, the adsorption decreases for all carbons studied. Moreover, the parameters of the DA model depend on the number of surface oxygen groups. That is why in the case of carbons containing surface polar groups, SF(6) adsorption isotherm data cannot be used for characterization of the porosity.
Resumo:
Uncertainties in projected ultraviolet (UV) radiation may lead to future increases in UV irradiation of freshwater lakes. Because dissolved organic carbon (DOC) is the main binding phase for mercury (Hg) in freshwater lakes, an increase in DOC photo-oxidation may affect Hg speciation and bioavailability. We quantified the effect of DOC concentration on the rate of abiotic DOC photo-oxidation for five lakes (DOC = 3.27–12.3 mg L−1) in Kejimkujik National Park, Canada. Samples were irradiated with UV-A or UV-B radiation over a 72-h period. UV-B radiation was found to be 2.36 times more efficient at photo-oxidizing DOC than UV-A, with energy-normalized rates of dissolved inorganic carbon (DIC) production ranging from 3.8 × 10−5 to 1.1 × 10−4 mg L−1 J−1 for UV-A, and from 6.0 × 10−5 to 3.1 × 10−4 mg L−1 J−1 for UV-B. Energy normalized rates of DIC production were positively correlated with DOC concentrations. Diffuse integrated attenuation coefficients were quantified in situ (UV-A Kd = 0.056–0.180 J cm−1; UV-B Kd = 0.015–0.165 J cm−1) and a quantitative depth-integrated model for yearly DIC photo-production in each lake was developed. The model predicts that, UV-A produces between 3.2 and 100 times more DIC (1521–2851 mg m−2 year−1) than UV-B radiation (29.17–746.7 mg m−2 year−1). Future increases in UV radiation may increase DIC production and increase Hg bioavailability in low DOC lakes to a greater extent than in high DOC lakes.