13 resultados para Capacity Constraints, Phillips Curve, NAICU Gap, Kalman-GMM Algorithm
em CentAUR: Central Archive University of Reading - UK
Resumo:
In this paper we apply GMM estimation to assess the relevance of domestic versus external determinants of CPI inflation dynamics in a sample of OECD countries typically classified as open economies. The analysis is based on a variant of the small open-economy New Keynesian Phillips Curve derived in Galí and Monacelli (Rev Econ Stud 72:707–734, 2005), where the novel feature is that expectations about fluctuations in the terms of trade enter explicitly. For most countries in our sample the expected relative change in the terms of trade emerges as the more relevant inflation driver than the contemporaneous domestic output gap.
Resumo:
A number of studies have found an asymmetric response of consumer price index inflation to the output gap in the US in simple Phillips curve models. We consider whether there are similar asymmetries in mark-up pricing models, that is, whether the mark-up over producers' costs also depends upon the sign of the (adjusted) output gap. The robustness of our findings to the price series is assessed, and also whether price-output responses in the UK are asymmetric.
Resumo:
This article examines the role of British exchange and import controls in stimulating the dramatic increase in overseas (particularly American) multinationals in Britain from the end of the Second World War to the late 1950s, together with the ways in which the government used controls to regulate the foreign direct investment (FDI) inflow. Exchange controls were both an important stimulus to inward investment and a powerful and flexible means of regulating its volume and character. Government was relatively successful in using these powers to maximize the dollar balance and industrial benefits of FDI to Britain, given initially severe dollar and capacity constraints, and in liberalizing policy once these constraints receded and competition from other FDI hosts intensified.
Resumo:
In this paper we evaluate the relative influence of external versus domestic inflation drivers in the 12 new European Union (EU) member countries. Our empirical analysis is based on the New Keynesian Phillips Curve (NKPC) derived in Galí and Monacelli (2005) for small open economies (SOE). Employing the generalized method of moments (GMM), we find that the SOE NKPC is well supported in the new EU member states. We also find that the inflation process is dominated by domestic variables in the larger countries of our sample, whereas external variables are mostly relevant in the smaller countries.
Resumo:
Background Pharmacy aseptic units prepare and supply injectables to minimise risks. The UK National Aseptic Error Reporting Scheme has been collecting data on pharmacy compounding errors, including near-misses, since 2003. Objectives The cumulative reports from January 2004 to December 2007, inclusive, were analysed. Methods The different variables of product types, error types, staff making and detecting errors, stage errors detected, perceived contributory factors, and potential or actual outcomes were presented by cross-tabulation of data. Results A total of 4691 reports were submitted against an estimated 958 532 items made, returning 0.49% as the overall error rate. Most of the errors were detected before reaching patients, with only 24 detected during or after administration. The highest number of reports related to adult cytotoxic preparations (40%) and the most frequently recorded error was a labelling error (34.2%). Errors were mostly detected at first check in assembly area (46.6%). Individual staff error contributed most (78.1%) to overall errors, while errors with paediatric parenteral nutrition appeared to be blamed on low staff levels more than other products were. The majority of errors (68.6%) had no potential patient outcomes attached, while it appeared that paediatric cytotoxic products and paediatric parenteral nutrition were associated with greater levels of perceived patient harm. Conclusions The majority of reports were related to near-misses, and this study highlights scope for examining current arrangements for checking and releasing products, certainly for paediatric cytotoxic and paediatric parenteral nutrition preparations within aseptic units, but in the context of resource and capacity constraints.
Resumo:
A Kalman filter algorithm has been applied to interpret the optical reflectance excursions during vacuum deposition of infrared coatings and multilayer thin-film filters. The application has been described in detail elsewhere and this paper now reports on-line experience for estimating deposition rate and thickness. The estimation proved sufficiently reliable to firstly 'navigate' regular manufacture (as controlled by a skilled operator) and to subsequently reproduce the skill without interpretation or intervention whilst maintaining exemplary product quality. Optical control by means of this Kalman filter application is therefore considered suitable as a basis for the automated manufacture of infrared coatings and multilayer thin-film filters.
Resumo:
This paper presents a controller design scheme for a priori unknown non-linear dynamical processes that are identified via an operating point neurofuzzy system from process data. Based on a neurofuzzy design and model construction algorithm (NeuDec) for a non-linear dynamical process, a neurofuzzy state-space model of controllable form is initially constructed. The control scheme based on closed-loop pole assignment is then utilized to ensure the time invariance and linearization of the state equations so that the system stability can be guaranteed under some mild assumptions, even in the presence of modelling error. The proposed approach requires a known state vector for the application of pole assignment state feedback. For this purpose, a generalized Kalman filtering algorithm with coloured noise is developed on the basis of the neurofuzzy state-space model to obtain an optimal state vector estimation. The derived controller is applied in typical output tracking problems by minimizing the tracking error. Simulation examples are included to demonstrate the operation and effectiveness of the new approach.
Resumo:
In this paper, we present an on-line estimation algorithm for an uncertain time delay in a continuous system based on the observational input-output data, subject to observational noise. The first order Pade approximation is used to approximate the time delay. At each time step, the algorithm combines the well known Kalman filter algorithm and the recursive instrumental variable least squares (RIVLS) algorithm in cascade form. The instrumental variable least squares algorithm is used in order to achieve the consistency of the delay parameter estimate, since an error-in-the-variable model is involved. An illustrative example is utilized to demonstrate the efficacy of the proposed approach.
Resumo:
A new state estimator algorithm is based on a neurofuzzy network and the Kalman filter algorithm. The major contribution of the paper is recognition of a bias problem in the parameter estimation of the state-space model and the introduction of a simple, effective prefiltering method to achieve unbiased parameter estimates in the state-space model, which will then be applied for state estimation using the Kalman filtering algorithm. Fundamental to this method is a simple prefiltering procedure using a nonlinear principal component analysis method based on the neurofuzzy basis set. This prefiltering can be performed without prior system structure knowledge. Numerical examples demonstrate the effectiveness of the new approach.
Resumo:
We present a novel kinetic multi-layer model for gas-particle interactions in aerosols and clouds (KMGAP) that treats explicitly all steps of mass transport and chemical reaction of semi-volatile species partitioning between gas phase, particle surface and particle bulk. KMGAP is based on the PRA model framework (P¨oschl-Rudich- Ammann, 2007), and it includes gas phase diffusion, reversible adsorption, surface reactions, bulk diffusion and reaction, as well as condensation, evaporation and heat transfer. The size change of atmospheric particles and the temporal evolution and spatial profile of the concentration of individual chemical species can be modeled along with gas uptake and accommodation coefficients. Depending on the complexity of the investigated system and the computational constraints, unlimited numbers of semi-volatile species, chemical reactions, and physical processes can be treated, and the model shall help to bridge gaps in the understanding and quantification of multiphase chemistry and microphysics in atmospheric aerosols and clouds. In this study we demonstrate how KM-GAP can be used to analyze, interpret and design experimental investigations of changes in particle size and chemical composition in response to condensation, evaporation, and chemical reaction. For the condensational growth of water droplets, our kinetic model results provide a direct link between laboratory observations and molecular dynamic simulations, confirming that the accommodation coefficient of water at 270K is close to unity (Winkler et al., 2006). Literature data on the evaporation of dioctyl phthalate as a function of particle size and time can be reproduced, and the model results suggest that changes in the experimental conditions like aerosol particle concentration and chamber geometry may influence the evaporation kinetics and can be optimized for efficient probing of specific physical effects and parameters. With regard to oxidative aging of organic aerosol particles, we illustrate how the formation and evaporation of volatile reaction products like nonanal can cause a decrease in the size of oleic acid particles exposed to ozone.
Resumo:
We describe a model-data fusion (MDF) inter-comparison project (REFLEX), which compared various algorithms for estimating carbon (C) model parameters consistent with both measured carbon fluxes and states and a simple C model. Participants were provided with the model and with both synthetic net ecosystem exchange (NEE) of CO2 and leaf area index (LAI) data, generated from the model with added noise, and observed NEE and LAI data from two eddy covariance sites. Participants endeavoured to estimate model parameters and states consistent with the model for all cases over the two years for which data were provided, and generate predictions for one additional year without observations. Nine participants contributed results using Metropolis algorithms, Kalman filters and a genetic algorithm. For the synthetic data case, parameter estimates compared well with the true values. The results of the analyses indicated that parameters linked directly to gross primary production (GPP) and ecosystem respiration, such as those related to foliage allocation and turnover, or temperature sensitivity of heterotrophic respiration, were best constrained and characterised. Poorly estimated parameters were those related to the allocation to and turnover of fine root/wood pools. Estimates of confidence intervals varied among algorithms, but several algorithms successfully located the true values of annual fluxes from synthetic experiments within relatively narrow 90% confidence intervals, achieving >80% success rate and mean NEE confidence intervals <110 gC m−2 year−1 for the synthetic case. Annual C flux estimates generated by participants generally agreed with gap-filling approaches using half-hourly data. The estimation of ecosystem respiration and GPP through MDF agreed well with outputs from partitioning studies using half-hourly data. Confidence limits on annual NEE increased by an average of 88% in the prediction year compared to the previous year, when data were available. Confidence intervals on annual NEE increased by 30% when observed data were used instead of synthetic data, reflecting and quantifying the addition of model error. Finally, our analyses indicated that incorporating additional constraints, using data on C pools (wood, soil and fine roots) would help to reduce uncertainties for model parameters poorly served by eddy covariance data.
Resumo:
The paper develops a more precise specification and understanding of the process of national-level knowledge accumulation and absorptive capabilities by applying the reasoning and evidence from the firm-level analysis pioneered by Cohen and Levinthal (1989, 1990). In doing so, we acknowledge that significant cross-border effects due to the role of both inward and outward FDI exist and that assimilation of foreign knowledge is not only confined to catching-up economies but is also carried out by countries at the frontier-sharing phase. We postulate a non-linear relationship between national absorptive capacity and the technological gap, due to the effects of the cumulative nature of the learning process and the increase in complexity of external knowledge as the country approaches the technological frontier. We argue that national absorptive capacity and the accumulation of knowledge stock are simultaneously determined. This implies that different phases of technological development require different strategies. During the catching-up phase, knowledge accumulation occurs predominately through the absorption of trade and/or inward FDI-related R&D spillovers. At the pre-frontier-sharing phase onwards, increases in the knowledge base occur largely through independent knowledge creation and actively accessing foreign-located technological spillovers, inter alia through outward FDI-related R&D, joint ventures and strategic alliances.
Resumo:
Healthcare information systems have the potential to enhance productivity, lower costs, and reduce medication errors by automating business processes. However, various issues such as system complexity and system abilities in a relation to user requirements as well as rapid changes in business needs have an impact on the use of these systems. In many cases failure of a system to meet business process needs has pushed users to develop alternative work processes (workarounds) to fill this gap. Some research has been undertaken on why users are motivated to perform and create workarounds. However, very little research has assessed the consequences on patient safety. Moreover, the impact of performing these workarounds on the organisation and how to quantify risks and benefits is not well analysed. Generally, there is a lack of rigorous understanding and qualitative and quantitative studies on healthcare IS workarounds and their outcomes. This project applies A Normative Approach for Modelling Workarounds to develop A Model of Motivation, Constraints, and Consequences. It aims to understand the phenomenon in-depth and provide guidelines to organisations on how to deal with workarounds. Finally the method is demonstrated on a case study example and its relative merits discussed.