14 resultados para Cabbage looper.
em CentAUR: Central Archive University of Reading - UK
Thermal and high hydrostatic pressure inactivation of myrosinase from green cabbage: a kinetic study
Resumo:
Myrosinase, a family of enzymes which coexist with glucosinolates in all Brassica vegetables, catalyses the hydrolysis of glucosinolates to yield compounds that can have beneficial effects on human health. In this study, the thermal and pressure inactivation of myrosinase from green cabbage was kinetically investigated. Thermal inactivation started at 35 C and inactivation kinetics was studied in the temperature range 35–55 C. Thermal inactivation of green cabbage myrosinase followed the well known consecutive step model. Pressure inactivation started at 300 MPa, even at 10 C, and the consecutive step model effectively described pressure inactivation in the range 300–450 MPa at 10 C. The combined effects of applying various pressures and temperatures on myrosinase inactivation kinetics were studied in the ranges 35–50 C and, 100–400 MPa. The inactivation followed first-order kinetics at all of the applied combinations. This study demonstrates that myrosinase from green cabbage is highly susceptible to both thermal and high pressure processing. Furthermore, it is also noted that myrosinase stability during processing appears to vary widely between different Brassica species.
Resumo:
The offspring of parasitoids, Aphidius colemani Viereck, reared on Brussels sprouts and emerging from Myzus persicae Sulzer on a fully defined artificial diet, show no preferences in a four-way olfactometer, either for the odour of the diet, the odour of Brussels sprouts, or the odour of two other crucifers (cabbage and Chinese cabbage). A similar lack of odour preferences is shown when the host aphids are exposed for parasitization (for 48 h) on cabbage, Chinese cabbage or wheat. However, if parasitization occurs on Brussels sprouts, a weak but statistically highly significant response to Brussels sprout odour is observed. Although as many as 30-35% of the parasitoids show no response to any odour, another 35% respond positively to the odour of Brussels sprout compared with responses to the odours of cabbage, Chinese cabbage or wheat of only approximately 10%. An analagous result is obtained when the parent parasitoids are reared on cabbage. In this case, significant positive responses of their offspring to cabbage odour occur only if the 48-h parasitization has occurred also on cabbage. However, with parasitoids from Brussels sprouts parasitizing the aphids for 48 h also on Brussels sprouts, the offspring subsequently emerging from pupae excised from the mummies show no preference for Brussels sprout odour. Thus, although the Brussels sprout cue had been experienced early in the development of the parasitoids, they only become conditioned to it when emerging from the mummy. Both male and female parasitoids respond very similarly in all experiments. It is proposed that the chemical cue (probably glucosinolates in these experiments) is most likely in the silk surrounding the parasitoid pupa, and that the mother may leave the chemical in or around the egg at oviposition, inducing chemical defences in her offspring to the secondary plant compounds that the offspring are likely to encounter.
Resumo:
Cells and cell-free solutions of the culture filtrate of the bacterial symbiont, Xenorhabdus nematophila taken from the entomopathogenic nematode Steinernema carpocapsae in aqueous broth suspensions were lethal to larvae of the diamondback moth Plutella xylostella. Their application on leaves of Chinese cabbage indicated that the cells can penetrate into the insects in the absence of the nematode vector. Cell-free solutions containing metabolites were also proved as effective as bacterial cells suspension. The application of aqueous suspensions of cells of X. nematophila or solutions containing its toxic metabolites to the leaves represents a possible new strategy for controlling insect pests on foliage.
Resumo:
Screenhouse experiments conducted in Kenya showed that inoculation of cabbage seedlings with Turnip mosaic virus (TuMV), either alone, or in combination with Cauliflower mosaic virus (CaMV), reduced the number and weight of marketable harvested heads. When viruses were inoculated simultaneously, 25% of cabbage heads were non-marketable, representing 20-fold loss compared with control. By contrast, inoculation with CaMV alone had insignificant effects on cabbage yield. This suggests that TuMV is the more detrimental of these pathogens, and its management should be a priority. Early exposure to TuMV produced cabbages that were 50% lighter than non-infected plants, but later infection was less damaging suggesting that controlling virus infection at the seedling stage is more important. TuMV was far less damaging to kale than it was to cabbage; although high proportions of TuMV-inoculated kale plants showed symptoms (> 90%), the marketability and quality of leaves were not significantly reduced, and no clear relationship existed between timing of infection and subsequent crop losses. Early inoculation of Swiss chard with Beet mosaic virus (BtMV) significantly impaired leaf quality (similar to 50% reduction in marketable leaf production), but the impact of disease was greatest in plants that had been inoculated at maturity, where average leaf losses were two and a half times those recorded in virus-free plants. Disease-management of BtMV in Swiss chard is important, therefore, not only at the seedling stage, but particularly when plants are transplanted from nursery to field.
Resumo:
The significance of Plasmodiophora brassicae Woronin and clubroot disease which it incites in members of the family Brassicaceae is reviewed as the focus for this special edition of the Journal of Plant Growth Regulation. This is a monographic treatment of recent research into the pathogen and disease; previous similar treatments are now well over half a century old. Vernacular nomenclature of the disease indicates that it had a well-established importance in agriculture and horticulture from at least the Middle Ages onward in Europe and probably earlier. Subsequently, the pathogen probably spread worldwide as a result of transfer on and in fodder taken by colonists as livestock feed. It is a moot point, however, whether there was much earlier spread by P. brassicae into China and subsequently Japan as Brassica rapa (Chinese cabbage and many variants) colonized those lands in archaeological time. Symptoms, worldwide distribution, and economic impact are briefly described here to provide a basis for understanding subsequent papers. Clubroot disease devastates both infected field and protected vegetable and agricultural Brassica crops. Particular importance is placed on recent reports of crop losses in tropical countries, albeit where the crops are grown in cooler altitudes, and in the Canadian prairie land canola crops. The latter is of enormous importance because this crop is the single most important and essential source of vegetable oils used in human foodstuffs and in industrial lubricants where mineral oils are inappropriate.
Resumo:
Emerging parasitoids of aphids encounter secondary plant chemistry from cues left by the mother parasitoid at oviposition and from the plant-feeding of the host aphid. In practice, however, it is secondary plant cheinistry oil the Surface of the aphid mummy which influences parasitoid olfactory behaviour. Offspring of Aphidius colemani reared oil Myzus persicae on artificial diet did no distinguish between the odours of bean and cabbage, but showed a clear preference for cabbage odour if sinigrin had been painted oil the back of the mummy. Similarly Aphidius rhopalosiphi reared on Metopolophium dirhodum on wheat preferred the odour of wheat plants grown near tomato plants to odour of wheat alone if the wheat plants oil which they had been reared had been exposed to the volatiles of nearby tomato plants. Aphidius rhopalosiphi reared on M dirhodum, and removed from the mummy before emergence, showed a preference for the odour of a different wheat cultivar if they had contacted a mummy from that cultivar, and similar results were obtained with A. colemani naturally emerged from M. persicae mummies. Aphidius colemani emerged from mummies oil one crucifer were allowed to contact in sequence (for 45 min each) mummies from two different crucifers. The mumber of attacks made in 10 min oil M. persicae was always significantly higher when aphids were feeding oil the same plant as the origin of the last MUMMY offered, or oil the second plant if aphids feeding on the third plant were not included. Chilling emerged A. colemani for 24 h at 5 degrees C appeared to erase the imprint of secondary plant chemistry, and they no longer showed host plant odour preferences in the olfactometer. When the parasitoids were chilled after three Successive mummy experiences, memory of the last experience appeared at least temporarily erased and preference was then shown for the chemistry of the second experience.
Resumo:
Glucosinolates (GLSs) are found in Brassica vegetables. Examples of these sources include cabbage, Brussels sprouts, broccoli, cauliflower and various root vegetables (e.g. radish and turnip). A number of epidemiological studies have identified an inverse association between consumption of these vegetables and the risk of colon and rectal cancer. Animal studies have shown changes in enzyme activities and DNA damage resulting from consumption of Brassica vegetables or isothiocyanates, the breakdown products (BDP) of GLSs in the body. Mechanistic studies have begun to identify the ways in which the compounds may exert their protective action but the relevance of these studies to protective effects in the human alimentary tract is as yet unproven. In vitro studies with a number of specific isothiocyanates have suggested mechanisms that might be the basis of their chemoprotective effects. The concentration and composition of the GLSs in different plants, but also within a plant (e.g. in the seeds, roots or leaves), can vary greatly and also changes during plant development. Furthermore, the effects of various factors in the supply chain of Brassica vegetables including breeding, cultivation, storage and processing on intake and bioavailability of GLSs are extensively discussed in this paper.
Resumo:
Artificial diet studies were used to differentiate among physical and chemical mechanisms affecting the suitability to diamondback moth (Plutella xylostella L.), of 16 food substrates obtained by growing four different brassicas in the glasshouse or field and measuring the pest's performance on either leaf discs or a diet incorporating leaf powders. Leaves of Chinese cabbage and the cabbage cultivar 'Minicole' were, respectively, the most and least suitable leaves for the insect, but this ranking was reversed on artificial diet. Leaves of glasshouse-grown plants were more suitable than those of plants grown in the fields. Differences in the suitability of leaves to diamondback moth appeared to be largely determined by leaf toughness and surface wax load. Concentrations of individual glucosinolates in the brassicas probably acted as phagostimulants, so increasing their intrinsic susceptibility to diamondback moth, but the effect of the physical factors appeared more important.
Resumo:
The type and quantity of fertilizer supplied to a crop will differ between organic and conventional farming practices. Altering the type of fertilizer a plant is provided with can influence a plant’s foliar nitrogen levels, as well as the composition and concentration of defence compounds, such as glucosinolates. Many natural enemies of insect herbivores can respond to headspace volatiles emitted by the herbivores’ host plant in response to herbivory. We propose that manipulating fertilizer type may also influence the headspace volatile profiles of plants, and as a result, the tritrophic interactions that occur between plants, their insect pests and those pests’ natural enemies. Here, we investigate a tritrophic system consisting of cabbage plants, Brassica oleracea, a parasitoid, Diaeretiella rapae, and one of its hosts, the specialist cabbage aphid Brevicoryne brassicae. Brassica oleracea plants were provided with either no additional fertilization or one of three types of fertilizer: Nitram (ammonium nitrate), John Innes base or organic chicken manure. We investigated whether these changes would alter the rate of parasitism of aphids on those plants and whether any differences in parasitism could be explained by differences in attractivity of the plants to D. rapae or attack rate of aphids by D. rapae. In free-choice experiments, there were significant differences in the percentage of B. brassicae parasitized by D. rapae between B. oleracea plants grown in different fertilizer treatments. In a series of dual-choice Y-tube olfactometry experiments, D. rapae females discriminated between B. brassicae-infested and undamaged plants, but parasitoids did not discriminate between similarly infested plants grown in different fertilizer treatments. Correspondingly, in attack rate experiments, there were no differences in the rate that D. rapae attacked B. brassicae on B. oleracea plants grown in different fertilizer treatments. These findings are of direct relevance to sustainable and conventional farming practices.
Resumo:
Calcium (Ca) and magnesium (Mg) are the most abundant group II elements in both plants and animals. Genetic variation in shoot Ca and shoot Mg concentration (shoot Ca and Mg) in plants can be exploited to biofortify food crops and thereby increase dietary Ca and Mg intake for humans and livestock. We present a comprehensive analysis of within-species genetic variation for shoot Ca and Mg, demonstrating that shoot mineral concentration differs significantly between subtaxa (varietas). We established a structured diversity foundation set of 376 accessions to capture a high proportion of species-wide allelic diversity within domesticated Brassica oleracea, including representation of wild relatives (C genome, 1n = 9) from natural populations. These accessions and 74 modern F-1 hybrid cultivars were grown in glasshouse and field environments. Shoot Ca and Mg varied 2- and 2.3-fold, respectively, and was typically not inversely correlated with shoot biomass, within most subtaxa. The closely related capitata (cabbage) and sabauda (Savoy cabbage) subtaxa consistently had the highest mean shoot Ca and Mg. Shoot Ca and Mg in glasshouse-grown plants was highly correlated with data from the field. To understand and dissect the genetic basis of variation in shoot Ca and Mg, we studied homozygous lines from a segregating B. oleracea mapping population. Shoot Ca and Mg was highly heritable (up to 40). Quantitative trait loci (QTL) for shoot Ca and Mg were detected on chromosomes C2, C6, C7, C8, and, in particular, C9, where QTL accounted for 14 to 55 of the total genetic variance. The presence of QTL on C9 was substantiated by scoring recurrent backcross substitution lines, derived from the same parents. This also greatly increased the map resolution, with strong evidence that a 4-cM region on C9 influences shoot Ca. This region corresponds to a 0.41-Mb region on Arabidopsis (Arabidopsis thaliana) chromosome 5 that includes 106 genes. There is also evidence that pleiotropic loci on C8 and C9 affect shoot Ca and Mg. Map-based cloning of these loci will reveal how shoot-level phenotypes relate to Ca 21 and Mg 21 uptake and homeostasis at the molecular level.
Resumo:
Plants produce volatile organic compounds (VOCs) in response to herbivore attack, and these VOCs can be used by parasitoids of the herbivore as host location cues. We investigated the behavioural responses of the parasitoid Cotesia vestalis to VOCs from a plant–herbivore complex consisting of cabbage plants (Brassica oleracea) and the parasitoids host caterpillar, Plutella xylostella. A Y-tube olfactometer was used to compare the parasitoids' responses to VOCs produced as a result of different levels of attack by the caterpillar and equivalent levels of mechanical damage. Headspace VOC production by these plant treatments was examined using gas chromatography–mass spectrometry. Cotesia vestalis were able to exploit quantitative and qualitative differences in volatile emissions, from the plant–herbivore complex, produced as a result of different numbers of herbivores feeding. Cotesia vestalis showed a preference for plants with more herbivores and herbivore damage, but did not distinguish between different levels of mechanical damage. Volatile profiles of plants with different levels of herbivores/herbivore damage could also be separated by canonical discriminant analyses. Analyses revealed a number of compounds whose emission increased significantly with herbivore load, and these VOCs may be particularly good indicators of herbivore number, as the parasitoid processes cues from its external environment
Resumo:
The type and quantity of fertilizer supplied to a crop will differ between organic and conventional farming practices. Altering the type of fertilizer a plant is provided with can influence a plant’s foliar nitrogen levels, as well as the composition and concentration of defence compounds, such as glucosinolates. Many natural enemies of insect herbivores can respond to headspace volatiles emitted by the herbivores’ host plant in response to herbivory. We propose that manipulating fertilizer type may also influence the headspace volatile profiles of plants, and as a result, the tritrophic interactions that occur between plants, their insect pests and those pests’ natural enemies. Here, we investigate a tritrophic system consisting of cabbage plants, Brassica oleracea, a parasitoid, Diaeretiella rapae, and one of its hosts, the specialist cabbage aphid Brevicoryne brassicae. Brassica oleracea plants were provided with either no additional fertilization or one of three types of fertilizer: Nitram (ammonium nitrate), John Innes base or organic chicken manure. We investigated whether these changes would alter the rate of parasitism of aphids on those plants and whether any differences in parasitism could be explained by differences in attractivity of the plants to D. rapae or attack rate of aphids by D. rapae. In free-choice experiments, there were significant differences in the percentage of B. brassicae parasitized by D. rapae between B. oleracea plants grown in different fertilizer treatments. In a series of dual-choice Y-tube olfactometry experiments, D. rapae females discriminated between B. brassicae-infested and undamaged plants, but parasitoids did not discriminate between similarly infested plants grown in different fertilizer treatments. Correspondingly, in attack rate experiments, there were no differences in the rate that D. rapae attacked B. brassicae on B. oleracea plants grown in different fertilizer treatments. These findings are of direct relevance to sustainable and conventional farming practices.
Resumo:
Brassicaceous vegetables (BV) have chemoprotective effects and yet consumption of BV in the UK is low. Previous studies suggest perception, liking and intake of BV are influenced by bitter taste sensitivity which this study further explores. Phenotypical taste sensitivity of 136 subjects was classified using propythiouracil (PROP) and sodium chloride and fungiform papillae density (FPD) was measured from tongue images. Polymorphisms of TAS2R38 and gustin (CA6) genes were analysed. Liking and bitterness of four raw vegetables (two BV (broccoli and white cabbage) and two non-BV (spinach and courgette)), as well as habitual consumption, were evaluated. There was a significant association between TAS2R38 genotype and PROP taster status (p<0.0001) and between FPD and PROP taster status (p=0.029). Individuals with greater sensitivity for PROP predominantly had TAS2R38 PAV/PAV genotype and greater FPD. BV were perceived as more bitter than non-BV (p<0.0001) with PAV/PAV subjects perceiving significantly stronger bitter intensity. There was a significant difference in liking for the four vegetables (p=0.002), and between consumers of different TAS2R38 genotype (p=0.0024). Individuals with TAS2R38 AVI/AVI genotype liked BV more. Regarding intake, both PAV/PAV and AVI/AVI individuals consumed more total vegetables and BV than PAV/AVI. Although PROP nontasters tended to consume more vegetables and BV than the other two phenotype groups, liking and vegetable intake were not significantly affected by taste phenotype. Although there was not a significant effect of CA6 genotype on bitterness ratings, there was a significant interaction between CA6 and TAS2R38, and in addition CA6 genotype was significantly associated with BV intake. However, these effects require validation as the proportions of the population with the CA6 G/G genotype was extremely small (7%). Our results confirmed that bitter taste perception in vegetables was influenced by both genotype and phenotype of bitter taste sensitivity. Moreover, our findings demonstrated that neither genotype nor phenotype of taste sensitivity alone accurately predict vegetable liking and intake as demographic factors were found to have a substantial influence.