20 resultados para CYTOCHROME BC(1) COMPLEX
em CentAUR: Central Archive University of Reading - UK
Resumo:
The new ligand 6,6 ''-bis(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)2,2':6 ',2 ''-terpyridine (CyMe4-BTTP) has been synthesized in 4 steps from 2,2':6',2 ''-terpyridine. Detailed NMR and mass spectrometry studies indicate that the ligand forms 1 : 2 complexes with lanthanide(III) perchlorates where the aliphatic rings are conformationally constrained whereas 1 : 1 complexes are formed with lanthanide(III) nitrates where the rings are conformationally mobile. An optimized structure of the 1 : 2 solution complex with Yb(III) was obtained from the relative magnitude of the induced paramagnetic shifts. X-Ray crystallographic structures of the ligand and of its 1 : 1 complex with Y(III) were also obtained. The NMR and mass spectra of [Pd(CyMe4-BTTP)](n)(2n+) are consistent with a dinuclear double helical structure (n = 2). In the absence of a phase-modifier, CyMe4-BTTP in n-octanol showed a maximum distribution coefficient of Am(III) of 0.039 (+/-20%) and a maximum separation factor of Am(III) over Eu(III) of 12.0 from nitric acid. The metal(III) cations are extracted as the 1 : 1 complex from nitric acid. The generally low distribution coefficients observed compared with the BTBPs arise because the 1 : 1 complex of CyMe4-BTTP is considerably less hydrophobic than the 1 : 2 complexes formed by the BTBPs. In M(BTTP)(3+) complexes, there is a competition between the nitrate ions and the ligand for the complexation of the metal.
Resumo:
Copper(II) acetate reacts with benzene-1,2-dioxyacetic acid (bdoaH2) in aqueous media to give [Cu(bdoa)(H2O)2] (1). Complex 1 reacts with the N-donor ligands pyridine (py), ammonia and 1,10-phenanthroline (phen) to give [Cu(bdoa)(NH3)2]·H2O (2), [Cu(bdoa)(py)2]·H2O (3) and [Cu2(bdoa)(phen)4]bdoa·13H2O (4), respectively. The X-ray crystal structure of the dicopper(II,II) complex 4 shows each copper atom at the centre of a distorted trigonal bipyramid comprising four nitrogen atoms from two chelating phen ligands and a single oxygen atom from one of the carboxylate moieties of the bridging bdoa2− ligand. The cyclic voltammogram of 4 shows a single reversible wave for the Cu2+/Cu+ couple at E = + 115 mV (vs Ag/AgCl). Spectroscopic and magnetic data for the complexes are given.
Resumo:
The quadridentate N-heterocyclic ligand 6-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin- 3-yl)-2,2′ : 6′,2′′-terpyridine (CyMe4-hemi-BTBP) has been synthesized and its interactions with Am(III),U(VI), Ln(III) and some transition metal cations have been evaluated by X-ray crystallographic analysis, Am(III)/Eu(III) solvent extraction experiments, UVabsorption spectrophotometry, NMR studies and ESI-MS. Structures of 1 : 1 complexes with Eu(III), Ce(III) and the linear uranyl (UO2 2+) ion were obtained by X-ray crystallographic analysis, and they showed similar coordination behavior to related BTBP complexes. In methanol, the stability constants of the Ln(III) complexes are slightly lower than those of the analogous quadridentate bis-triazine BTBP ligands, while the stability constant for the Yb(III)complex is higher. 1H NMR titrations and ESI-MS with lanthanide nitrates showed that the ligand forms only 1 : 1 complexes with Eu(III), Ce(III) and Yb(III), while both 1 : 1 and 1 : 2 complexes were formed with La(III) and Y(III) in acetonitrile. A mixture of isomeric chiral 2 : 2 helical complexes was formed with Cu(I), with a slight preference (1.4 : 1) for a single directional isomer. In contrast, a 1 : 1 complex was observed with the larger Ag(I) ion. The ligand was unable to extract Am(III) or Eu(III) from nitric acid solutions into 1-octanol, except in the presence of a synergist at low acidity. The results show that the presence of two outer 1,2,4-triazine rings is required for the efficient extraction and separation of An(III)from Ln(III) by quadridentate N-donor ligands.
Resumo:
The new dioxatetraazamacrocycle (L-1) was synthesized by a 2 + 2 condensation and characterized. Stability constants of its copper(II) complexes were determined by spectrophotometry in DMSO at 298.2 K in 0. 10 mol dm(-3) KClO4. Mainly dinuclear complexes are formed and the presence of mononuclear species is dependent on the counterion (Cl- or ClO4-). The association constants of the dinuclear copper(II) complexes with dicarboxylate anions [oxalate (oxa(2-)), malonate (mal(2-)), succinate (suc(2-)), and glutarate (glu(2-))] were also determined by spectrophotometry at 298.2 K in DMSO, and it was found that values decrease with an increase of the alkyl chain between the carboxylate groups. X-Band EPR spectra of the dicopper(II) complexes and of their cascade species in frozen DMSO exhibit dipole-dipole coupling, and their simulation, together with their UV-vis spectra, showed that the copper centres of the complexes in solution had square pyramidal geometries though with different distortions. From the experimental data, it was also possible to predict the Cu...Cu distances, the minimum being found at 6.4 angstrom for the (Cu2LCl4)-Cl-1 complex and then successively this distance slightly increases when the chloride anions are replaced by dicarboxylate anions, from 6.6 angstrom for oxa(2-) to 7.8 for glu(2-). The crystal structures of the dinuclear copper cascade species with oxa(2-) and suc(2-) were determined and showed one anion bridging both copper centres and Cu...Cu distances of 5.485(7) angstrom and 6.442(8) angstrom, respectively.
Resumo:
Reaction of the tridentate ONO Schiff-base ligand 2-hydroxybenzoylhydrazone of 2-hydroxybenzoylhydrazine (H2L) with VO(acac)(2) in ethanol medium produces the oxoethoxovanadium(V) complex [VO(OEt)L] (A), which reacts with pyridine to form [VO(OEt)L center dot(py)] (1). Complex 1 is structurally characterized. It has a distorted octahedral O4N2 coordination environment around the V(V) acceptor center. Both complexes A and 1 in ethanol medium react with neutral monodentate Lewis bases 2-picoline, 3-picoline, 4-picoline, 4-amino pyridine, imidazole, and 4-methyl imidazole, all of which are stronger bases than pyridine, to produce dioxovanadium(V) complexes of general formula BH[VO2L]. Most of these dioxo complexes are structurally characterized, and the complex anion [VO2L](-) is found to possess a distorted square pyramidal structure. When a solution/suspension of a BH[VO2L] complex in an alcohol (ROH) is treated with HCl in the same alcohol, it is converted into the corresponding monooxoalkoxo complex [ O(OR)L], where R comes from the alcohol used as the reaction medium. Both complexes A and 1 produce the 4,4'-bipyridine-bridged binuclear complex [VO(OEt)L](2)(mu-4,4'-bipy) (2), which, to the best of our knowledge, represents the first report of a structurally characterized 4,4'-bipyridine-bridged oxovanadium(V) binuclear complex. Two similar binuclear oxovanadium(V) complexes 3 and 4 are also synthesized and characterized. All these binuclear complexes (2-4), on treatment with base B, produce the corresponding mononuclear dioxovanadium(V) complexes (5-10).
Resumo:
The ferric complexing capacity of four phenolic compounds, occurring in olives and virgin olive oil, namely, oleuropein, hydroxytyrosol, 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA), and 3,4-dihydroxyphenylethanol-elenolic acid dialdehyde (3,4-DHPEA-EDA), and their stability in the presence of ferric ions were studied. At pH 3.5, all compounds formed a reversible 1:1 complex with ferric ions, but hydroxytyrosol could also form complexes containing > 1 ferric ion per phenol molecule. At pH 5.5, the complexes between ferric ions and 3,4-DHPEA-EA or 3,4-DHPEA-EDA were relatively stable, indicating that the antioxidant activity of 3,4-DHPEA-EA or 3,4-DHPEA-EDA at pH 5.5 is partly due to their metal-chelating activity. At pH 7.4, a complex containing > 1 ferric ion per phenol molecule was formed with hydroxytyrosol. Oleuropein, 3,4-DHPEA-EA, and 3,4-DHPEA-EDA also formed insoluble complexes at this pH. There was no evidence for chelation of Fe(II) by hydroxytyrosol or its derivatives. At all pH values tested, hydroxytyrosol was the most stable compound in the absence of Fe(III) but the most sensitive to the presence of Fe(III).
Resumo:
Two members of the tetradentate N-donor ligand families 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) and 2,9-bis(1,2,4-triazin-3-yl)-1,10-phenanthroline (BTPhen) currently being developed for separating actinides from lanthanides have been studied. It has been confirmed that CyMe4-BTPhen 2 has faster complexation kinetics than CyMe4-BTBP 1. The values for the HOMO−LUMO gap of 2 are comparable with those of CyMe4-BTBP 1 for which the HOMO−LUMO gap was previously calculated to be 2.13 eV. The displacement of BTBP from its bis-lanthanum(III) complex by BTPhen was observed by NMR, and constitutes the only direct evidence for the greater thermodynamic stability of the complexes of BTPhen. NMR competition experiments suggest the following order of bis-complex stability: 1:2 bis-BTPhen complex ≥ heteroleptic BTBP/BTPhen 1:2 bis-complex > 1:2 bis-BTBP complex. Kinetics studies on some bis-triazine N-donor ligands using the stopped-flow technique showed a clear relationship between the rates of metal ion complexation and the degree to which the ligand is preorganized for metal binding. The BTBPs must overcome a significant (ca. 12 kcal mol−1) energy barrier to rotation about the central biaryl C−C axis in order to achieve the cis−cis conformation that is required to form a complex, whereas the cis−cis conformation is fixed in the BTPhens. Complexation thermodynamics and kinetics studies in acetonitrile show subtle differences between the thermodynamic stabilities of the complexes formed, with similar stability constants being found for both ligands. The first crystal structure of a 1:1 complex of CyMe4-BTPhen 2 with Y(NO3)3 is also reported. The metal ion is 10- coordinate being bonded to the tetradentate ligand 2 and three bidentate nitrate ions. The tetradentate ligand is nearly planar with angles between consecutive rings of 16.4(2)°, 6.4(2)°, 9.7(2)°, respectively.
Resumo:
Bis-triazinylphenanthroline ligands (BTPhens), which contain additional alkyl (n-butyl and sec-butyl) groups attached to the triazine rings, have been synthesized, and the effects of this alkyl substitution on their extraction properties with Ln(III) and An(III) cations in simulated nuclear waste solutions have been studied. The speciation of n-butyl-substituted ligand (C4- BTPhen) with some trivalent lanthanide nitrates was elucidated by 1 H-NMR spectroscopic titrations. These experiments have shown that the dominant species in solution were the 1:2 complexes [Ln(III)(BTPhen)2], even at higher Ln(III) concentrations, and the relative stability of 2:1 to 1:1 BTPhen-Ln(III) complexes varied with different lanthanides. As expected, sec-butylsubstituted ligand (sec-C4 BTPhen) showed higher solubility than C4-BTPhen in certain diluents. A greater separation factor (SFAm/Eu = ca. 210) was observed for sec-C4-BTPhen compared to C4-BTPhen (SFAm/Eu = ca. 125) in 1-octanol at 4 M HNO3 solutions. The greater separation factor may be due to the higher solubility of the 2:1 complex for sec-C4-BTPhen at the interface than the 1:1 complex of C4-BTPhen.
Resumo:
Two polymeric azido bridged complexes [Ni2L2(N-3)(3)](n)(ClO4). (1) and [Cu(bpdS)(2)(N-3)],(ClO4),(H2O)(2.5n) (2) [L = Schiff base, obtained from the condensation of pyridine-2-aldehyde with N,N,2,2-tetramethyl-1,3-propanediamine; bpds = 4,4'-bipyridyl disulfide] have been synthesized and their crystal structures have been determined. Complex 1, C26H42ClN15Ni2O4, crystallizes in a triclinic system, space group P1 with a 8.089(13), b = 9.392(14), c = 12.267(18) angstrom, a = 107.28(l), b 95.95(1), gamma = 96.92(1)degrees and Z = 2; complex 2, C20H21ClCuN7O6.5S4, crystallizes in an orthorhombic system, space group Pnna with a = 10.839(14), b = 13.208(17), c = 19.75(2) angstrom and Z = 4. The crystal structure of I consists of 1D polymers of nickel(L) units, alternatively connected by single and double bridging mu-(1,3-N-3) ligand with isolated perchlorate anions. Variable temperature magnetic susceptibility data of the complex have been measured and the fitting,of magnetic data was carried out applying the Borris-Almenar formula for such types of alternating one-dimensional S = 1 systems, based on the Hamiltonian H = -J Sigma(S2iS2i-1 + aS(2i)S(2i+1)). The best-fit parameters obtained are J = -106.7 +/- 2 cm(-1); a = 0.82 +/- 0.02; g = 2.21 +/- 0.02. Complex 2 is a 2D network of 4,4 topology with the nodes occupied by the Cu-II ions, and the edges formed by single azide and double bpds connectors. The perchlorate anions are located between pairs of bpds. The magnetic data have been fitted considering the complex as a pseudo-one-dimensional system, with all copper((II)) atoms linked by [mu(1,3-azido) bridging ligands at axial positions (long Cu...N-3 distances) since the coupling through long bpds is almost nil. The best-fit parameters obtained with this model are J = -1.21 +/- 0.2 cm(-1), g 2.14 +/- 0.02. (c) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005).
Resumo:
Redox-controlled luminescence quenching is presented for a new Ru(II)-bipyridine complex [Ru(bpy)(2)(1)](2+) where ligand 1 is an anthra[1,10] phenanthrolinequinone. The complex emits from a short-lived metal-to-ligand charge transfer, (MLCT)-M-3 state (tau = 5.5 ns in deaerated acetonitrile) with a low luminescence quantum yield (5 x 10(-4)). The emission intensity becomes significantly enhanced when the switchable anthraquinone unit is reduced to corresponding hydroquinone. On the contrary, chemical one-electron reduction of the anthraquinone moiety to semiquinone in aprotic tetrahydrofuran results in total quenching of the emission.
Resumo:
The ligand 2,2'-[(E)-diazene-1,2-diyldicarbonothioyl]diphenol has been synthesised in situ by aerial oxidation of o-hydroxythiobenzhydrazide [H(htbh)] in presence of rhodium(III) in DMSO. Each ligand binds two RhO2+ ions through its N and S atoms and the O atom of its deprotonated hydroxy group. Each RhO2+ contains two cis-Rh = O bonds. The sixth coordination site of each rhodium(v) is occupied by the O of DMSO.
Resumo:
A 1,1' bis(diphenylphosphino ferrocene) dioxide complex of uranyl nitrate was synthesized and characterized by IR, H-1 and P-31{H-1} NMR spectroscopic and X-ray diffraction methods. The structure of the compound shows that the uranium atom is surrounded by eight oxygen atoms in a hexagonal bi-pyramidal geometry. Two oxygen atoms from 1,1' bis(diphenylphosphino ferrocene) dioxide ligand and four oxygen atoms from the nitrate groups form a planar hexagon. The two uranyl oxygen atoms occupy the axial position. The 1,1' bis(diphenylphosphino ferrocene) dioxide ligand acts as a bidentate chelating ligand with a bite angle of 71.56(8)degrees around the uranium(VI) atom, which is much smaller in value compare to any of the previously reported values (90.1 degrees-154.0 degrees) for this ligand.
Resumo:
Benzene-1,2-dioxyacetic acid (bdoaH2) reacts with Mn(CH3CO2)2·4H2O in an ethanol-water mixture to give the manganese(II) complex [Mn(bdoa)(H2O)3]. The X-ray crystal structure of the complex shows the metal to be pseudo seven-coordinate. The quadridentate bdoa2− dicar☐ylate ligand forms an essentially planar girdle around the metal, being strongly bondedtransoid by a car☐ylate oxygen atom from each of the two car☐ylate moieties (mean MnO 2.199A˚) and also weakly chelated by the two internal ether oxygen atoms (mean MnO 2.413A˚). The coordination sphere about the manganese is completed by three water molecules (mean MnO 2.146A˚) lying in a meridional plane orthogonal to that of the bdoa2− ligand. Magnetic, conductivity and voltammetry data for the complex are given, and its use as a catalyst for the disproportionisation of H2O2 is described.
Resumo:
An aqueous solution of the α-ω-dicarboxylic acid octanedioic acid (odaH2) reacts with [Cu2(μ-O2CCH3)4(H2O)2] in the presence of an excess of pyridine (py) to give the crystalline copper(II) complex {Cu2(η1η1μ2-oda)2(py)4(H2O)2}n (1). structure of 1, as determined by X-ray crystallography, consists of polymeric chains in which bridging oda2− anions link two crystallographically identical copper atoms. The copper atoms are also ligated by two transoidal pyridine nitrogens and an oxygen atom from an apical water molecule, giving the metals an overall N2O3 square-pyramidal geometry. If the blue solid 1 is gently heated, or if it is left to stand in its mother liquor for prolonged periods, it loses one molecule of pyridine and half a molecule of water and the green complex {Cu (oda)(py)(H2O)0.5}n (2) is formed. Spectroscopic and magnetic data for both complexes are given, together with the electrochemical and thermogravimetric measurements for 1.
Resumo:
The synthesis and X-ray crystal structure of the MnII,11 complex double salt [Mn2(η1η1µ2-oda)(phen)4(H2O)2][Mn2(η1η1µ2-oda(phen)4(η1-oda)2]·4H2O is reported, together with its catalytic activity towards the disproportionation of H2O2.