5 resultados para CYCLOTRON-RESONANCE PLASMA

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurately measured peptide masses can be used for large-scale protein identification from bacterial whole-cell digests as an alternative to tandem mass spectrometry (MS/MS) provided mass measurement errors of a few parts-per-million (ppm) are obtained. Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) routinely achieves such mass accuracy either with internal calibration or by regulating the charge in the analyzer cell. We have developed a novel and automated method for internal calibration of liquid chromatography (LC)/FTICR data from whole-cell digests using peptides in the sample identified by concurrent MS/MS together with ambient polydimethyl-cyclosiloxanes as internal calibrants in the mass spectra. The method reduced mass measurement error from 4.3 +/- 3.7 ppm to 0.3 +/- 2.3 ppm in an E. coli LC/FTICR dataset of 1000 MS and MS/MS spectra and is applicable to all analyses of complex protein digests by FTICRMS. Copyright (c) 2006 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There are several advantages of using metabolic labeling in quantitative proteomics. The early pooling of samples compared to post-labeling methods eliminates errors from different sample processing, protein extraction and enzymatic digestion. Metabolic labeling is also highly efficient and relatively inexpensive compared to commercial labeling reagents. However, methods for multiplexed quantitation in the MS-domain (or ‘non-isobaric’ methods), suffer from signal dilution at higher degrees of multiplexing, as the MS/MS signal for peptide identification is lower given the same amount of peptide loaded onto the column or injected into the mass spectrometer. This may partly be overcome by mixing the samples at non-uniform ratios, for instance by increasing the fraction of unlabeled proteins. We have developed an algorithm for arbitrary degrees of nonisobaric multiplexing for relative protein abundance measurements. We have used metabolic labeling with different levels of 15N, but the algorithm is in principle applicable to any isotope or combination of isotopes. Ion trap mass spectrometers are fast and suitable for LC-MS/MS and peptide identification. However, they cannot resolve overlapping isotopic envelopes from different peptides, which makes them less suitable for MS-based quantitation. Fourier-transform ion cyclotron resonance (FTICR) mass spectrometry is less suitable for LC-MS/MS, but provides the resolving power required to resolve overlapping isotopic envelopes. We therefore combined ion trap LC-MS/MS for peptide identification with FTICR LC-MS for quantitation using chromatographic alignment. We applied the method in a heat shock study in a plant model system (A. thaliana) and compared the results with gene expression data from similar experiments in literature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the rapid development of proteomics, a number of different methods appeared for the basic task of protein identification. We made a simple comparison between a common liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflow using an ion trap mass spectrometer and a combined LC-MS and LC-MS/MS method using Fourier transform ion cyclotron resonance (FTICR) mass spectrometry and accurate peptide masses. To compare the two methods for protein identification, we grew and extracted proteins from E. coli using established protocols. Cystines were reduced and alkylated, and proteins digested by trypsin. The resulting peptide mixtures were separated by reversed-phase liquid chromatography using a 4 h gradient from 0 to 50% acetonitrile over a C18 reversed-phase column. The LC separation was coupled on-line to either a Bruker Esquire HCT ion trap or a Bruker 7 tesla APEX-Qe Qh-FTICR hybrid mass spectrometer. Data-dependent Qh-FTICR-MS/MS spectra were acquired using the quadrupole mass filter and collisionally induced dissociation into the external hexapole trap. Proteins were in both schemes identified by Mascot MS/MS ion searches and the peptides identified from these proteins in the FTICR MS/MS data were used for automatic internal calibration of the FTICR-MS data, together with ambient polydimethylcyclosiloxane ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

TGR5 is a G protein-coupled receptor that mediates bile acid (BA) effects on energy balance, inflammation, digestion and sensation. The mechanisms and spatiotemporal control of TGR5 signaling are poorly understood. We investigated TGR5 signaling and trafficking in transfected HEK293 cells and colonocytes (NCM460) that endogenously express TGR5. BAs (deoxycholic acid, DCA, taurolithocholic acid, TLCA) and the selective agonists oleanolic acid (OA) and 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide (CCDC) stimulated cAMP formation but did not induce TGR5 endocytosis or recruitment of β-arrestins, assessed by confocal microscopy. DCA, TLCA and OA did not stimulate TGR5 association with β-arrestin 1/2 or G protein-coupled receptor kinase (GRK) 2/5/6, determined by bioluminescence resonance energy transfer. CCDC stimulated a low level of TGR5 interaction with β-arrestin2 and GRK2. DCA induced cAMP formation at the plasma membrane and cytosol, determined using exchange factor directly regulated by cAMP (Epac2)-based reporters, but cAMP signals did not desensitize. AG1478, an inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, the metalloprotease inhibitor batimastat, and methyl-β-cyclodextrin and filipin, which block lipid raft formation, prevented DCA stimulation of extracellular signal regulated kinase (ERK1/2). BRET analysis revealed TGR5 and EGFR interactions that were blocked by disruption of lipid rafts. DCA stimulated TGR5 redistribution to plasma membrane microdomains, localized by immunogold electron microscopy. Thus, TGR5 does not interact with β-arrestins, desensitize or traffic to endosomes. TGR5 signals from plasma membrane rafts that facilitate EGFR interaction and transactivation. An understanding of the spatiotemporal control of TGR5 signaling provides insights into the actions of BAs and therapeutic TGR5 agonists/antagonists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate electron acceleration due to shear Alfven waves in a collissionless plasma for plasma parameters typical of 4–5RE radial distance from the Earth along auroral field lines. Recent observational work has motivated this study, which explores the plasma regime where the thermal velocity of the electrons is similar to the Alfven speed of the plasma, encouraging Landau resonance for electrons in the wave fields. We use a self-consistent kinetic simulation model to follow the evolution of the electrons as they interact with a short-duration wave pulse, which allows us to determine the parallel electric field of the shear Alfven wave due to both electron inertia and electron pressure effects. The simulation demonstrates that electrons can be accelerated to keV energies in a modest amplitude sub-second period wave. We compare the parallel electric field obtained from the simulation with those provided by fluid approximations.