66 resultados para COMPREHENSIVE HEALTHCARE
em CentAUR: Central Archive University of Reading - UK
Resumo:
The crystal structure of 4-phenyl-benzaldehyde reveals the presence of a dimer linked by the C=O and C( 9)-H groups of adjacent molecules. In the liquid phase, the presence of C-(HO)-O-... bonded forms is revealed by both vibrational and NMR spectroscopy. A Delta H value of - 8.2 +/- 0.5 kJ mol(-1) for the dimerisation equilibrium is established from the temperature-dependent intensities of the bands assigned to the carbonyl-stretching modes. The NMR data suggest the preferential engagement of the C(2,6)-H and C(10/12)/C(11)-H groups as hydrogen bond donors, instead of the C(9)-H group. While ab initio calculations for the isolated dimers are unable to corroborate these NMR results, the radial distribution functions obtained from molecular dynamics simulations show a preference for C(2,6)-H and C(10/12)/C(11)-(HO)-O-... contacts relative to the C(9)-(HO)-O-... ones.
Resumo:
The built environment in which health and social care is delivered can have an impact on the efficiency and outcomes of care processes. The health-care estate is large and growing and is expensive to build, adapt and maintain. The design of these buildings is a complex, difficult and political process. Better use of care pathways as an input to the design and use of the built environment has the potential to deliver significant benefits. A number of variations on the idea of care pathways are already used in designing health-care buildings but this is under-researched. This paper provides a framework for thinking about care pathways and the health-care built environment. The framework distinguishes between five different pathway ‘types’ defined for the purpose of understanding the relationship between pathways and infrastructure. The five types are: ‘care pathways’, ‘integrated care pathways’, ‘patient pathways’, ‘patient journeys’ and ‘patient flows’. The built environment implications of each type are discussed and recommendations made for those involved in either building development or care pathway projects.
Resumo:
The built environment in which health and social care is delivered can have an impact on the efficiency and outcomes of care processes. The health-care estate is large and growing and is expensive to build, adapt and maintain. The design of these buildings is a complex, difficult and political process. Better use of care pathways as an input to the design and use of the built environment has the potential to deliver significant benefits. A number of variations on the idea of care pathways are already used in designing health-care buildings but this is under-researched. This paper provides a framework for thinking about care pathways and the health-care built environment. The framework distinguishes between five different pathway ‘types’ defined for the purpose of understanding the relationship between pathways and infrastructure. The five types are: ‘care pathways’, ‘integrated care pathways’, ‘patient pathways’, ‘patient journeys’ and ‘patient flows’. The built environment implications of each type are discussed and recommendations made for those involved in either building development or care pathway projects.
Resumo:
The inaugural meeting of the International Scientific Association for Probiotics and Prebiotics (ISAPP) was held May 3 to May 5 2002 in London, Ontario, Canada. A group of 63 academic and industrial scientists from around the world convened to discuss current issues in the science of probiotics and prebiotics. ISAPP is a non-profit organization comprised of international scientists whose intent is to strongly support and improve the levels of scientific integrity and due diligence associated with the study, use, and application of probiotics and prebiotics. In addition, ISAPP values its role in facilitating communication with the public and healthcare providers and among scientists in related fields on all topics pertinent to probiotics and prebiotics. It is anticipated that such efforts will lead to development of approaches and products that are optimally designed for the improvement of human and animal health and well being. This article is a summary of the discussions, conclusions, and recommendations made by 8 working groups convened during the first ISAPP workshop focusing on the topics of: definitions, intestinal flora, extra-intestinal sites, immune function, intestinal disease, cancer, genetics and genomics, and second generation prebiotics. Humans have evolved in symbiosis with an estimated 1014 resident microorganisms. However, as medicine has widely defined and explored the perpetrators of disease, including those of microbial origin, it has paid relatively little attention to the microbial cells that constitute the most abundant life forms associated with our body. Microbial metabolism in humans and animals constitutes an intense biochemical activity in the body, with profound repercussions for health and disease. As understanding of the human genome constantly expands, an important opportunity will arise to better determine the relationship between microbial populations within the body and host factors (including gender, genetic background, and nutrition) and the concomitant implications for health and improved quality of life. Combined human and microbial genetic studies will determine how such interactions can affect human health and longevity, which communication systems are used, and how they can be influenced to benefit the host. Probiotics are defined as live microorganisms which, when administered in adequate amounts confer a health benefit on the host.1 The probiotic concept dates back over 100 years, but only in recent times have the scientific knowledge and tools become available to properly evaluate their effects on normal health and well being, and their potential in preventing and treating disease. A similar situation exists for prebiotics, defined by this group as non-digestible substances that provide a beneficial physiological effect on the host by selectively stimulating the favorable growth or activity of a limited number of indigenous bacteria. Prebiotics function complementary to, and possibly synergistically with, probiotics. Numerous studies are providing insights into the growth and metabolic influence of these microbial nutrients on health. Today, the science behind the function of probiotics and prebiotics still requires more stringent deciphering both scientifically and mechanistically. The explosion of publications and interest in probiotics and prebiotics has resulted in a body of collective research that points toward great promise. However, this research is spread among such a diversity of organisms, delivery vehicles (foods, pills, and supplements), and potential health targets such that general conclusions cannot easily be made. Nevertheless, this situation is rapidly changing on a number of important fronts. With progress over the past decade on the genetics of lactic acid bacteria and the recent, 2,3 and pending, 4 release of complete genome sequences for major probiotic species, the field is now armed with detailed information and sophisticated microbiological and bioinformatic tools. Similarly, advances in biotechnology could yield new probiotics and prebiotics designed for enhanced or expanded functionality. The incorporation of genetic tools within a multidisciplinary scientific platform is expected to reveal the contributions of commensals, probiotics, and prebiotics to general health and well being and explicitly identify the mechanisms and corresponding host responses that provide the basis for their positive roles and associated claims. In terms of human suffering, the need for effective new approaches to prevent and treat disease is paramount. The need exists not only to alleviate the significant mortality and morbidity caused by intestinal diseases worldwide (especially diarrheal diseases in children), but also for infections at non-intestinal sites. This is especially worthy of pursuit in developing nations where mortality is too often the outcome of food and water borne infection. Inasmuch as probiotics and prebiotics are able to influence the populations or activities of commensal microflora, there is evidence that they can also play a role in mitigating some diseases. 5,6 Preliminary support that probiotics and prebiotics may be useful as intervention in conditions including inflammatory bowel disease, irritable bowel syndrome, allergy, cancer (especially colorectal cancer of which 75% are associated with diet), vaginal and urinary tract infections in women, kidney stone disease, mineral absorption, and infections caused by Helicobacter pylori is emerging. Some metabolites of microbes in the gut may also impact systemic conditions ranging from coronary heart disease to cognitive function, suggesting the possibility that exogenously applied microbes in the form of probiotics, or alteration of gut microecology with prebiotics, may be useful interventions even in these apparently disparate conditions. Beyond these direct intervention targets, probiotic cultures can also serve in expanded roles as live vehicles to deliver biologic agents (vaccines, enzymes, and proteins) to targeted locations within the body. The economic impact of these disease conditions in terms of diagnosis, treatment, doctor and hospital visits, and time off work exceeds several hundred billion dollars. The quality of life impact is also of major concern. Probiotics and prebiotics offer plausible opportunities to reduce the morbidity associated with these conditions. The following addresses issues that emerged from 8 workshops (Definitions, Intestinal Flora, Extra-Intestinal Sites, Immune Function, Intestinal Disease, Cancer, Genomics, and Second Generation Prebiotics), reflecting the current scientific state of probiotics and prebiotics. This is not a comprehensive review, however the study emphasizes pivotal knowledge gaps, and recommendations are made as to the underlying scientific and multidisciplinary studies that will be required to advance our understanding of the roles and impact of prebiotics, probiotics, and the commensal microflora upon health and disease management.
Resumo:
Patients want and need comprehensive and accurate information about their medicines so that they can participate in decisions about their healthcare: In particular, they require information about the likely risks and benefits that are associated with the different treatment options. However, to provide this information in a form that people can readily understand and use is a considerable challenge to healthcare professionals. One recent attempt to standardise the Language of risk has been to produce sets of verbal descriptors that correspond to specific probability ranges, such as those outlined in the European Commission (EC) Pharmaceutical Committee guidelines in 1998 for describing the incidence of adverse effects. This paper provides an overview of a number of studies involving members of the general public, patients, and hospital doctors, that evaluated the utility of the EC guideline descriptors (very common, common, uncommon, rare, very rare). In all studies it was found that people significantly over-estimated the likelihood of adverse effects occurring, given specific verbal descriptors. This in turn resulted in significantly higher ratings of their perceived risks to health and significantly lower ratings of their likelihood of taking the medicine. Such problems of interpretation are not restricted to the EC guideline descriptors. Similar levels of misinterpretation have also been demonstrated with two other recently advocated risk scales (Caiman's verbal descriptor scale and Barclay, Costigan and Davies' lottery scale). In conclusion, the challenge for risk communicators and for future research will be to produce a language of risk that is sufficiently flexible to take into account different perspectives, as well as changing circumstances and contexts of illness and its treatments. In the meantime, we urge the EC and other legislative bodies to stop recommending the use of specific verbal labels or phrases until there is a stronger evidence base to support their use.
Resumo:
Nowadays the use of information and communication technology is becoming prevalent in many aspects of healthcare services from patient registration, to consultation, treatment and pathology tests request. Manual interface techniques have dominated data-capture activities in primary care and secondary care settings for decades. Despites the improvements made in IT, usability issues still remain over the use of I/O devices like the computer keyboard, touch-sensitive screens, light pen and barcodes. Furthermore, clinicians have to use several computer applications when providing healthcare services to patients. One of the problems faced by medical professionals is the lack of data integrity between the different software applications which in turn can hinder the provision of healthcare services tailored to the needs of the patients. The use of digital pen and paper technology integrated with legacy medical systems hold the promise of improving healthcare quality. This paper discusses the issue of data integrity in e-health systems and proposes the modelling of "Smart Forms" via semiotics to potentially improve integrity between legacy systems, making the work of medical professionals easier and improve the quality of care in primary care practices and hospitals.
Resumo:
Ubiquitous healthcare is an emerging area of technology that uses a large number of environmental and patient sensors and actuators to monitor and improve patients’ physical and mental condition. Tiny sensors gather data on almost any physiological characteristic that can be used to diagnose health problems. This technology faces some challenging ethical questions, ranging from the small-scale individual issues of trust and efficacy to the societal issues of health and longevity gaps related to economic status. It presents particular problems in combining developing computer/information/media ethics with established medical ethics. This article describes a practice-based ethics approach, considering in particular the areas of privacy, agency, equity and liability. It raises questions that ubiquitous healthcare will force practitioners to face as they develop ubiquitous healthcare systems. Medicine is a controlled profession whose practise is commonly restricted by government-appointed authorities, whereas computer software and hardware development is notoriously lacking in such regimes.