46 resultados para COIL BLOCK-COPOLYMERS

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hierarchical ordering in a side group liquid crystal block copolymer is investigated by differential scanning calorimetry, polarized optical microscopy, small-angle X-ray and neutron scattering (SAXS and SANS) and transmission electron microscopy (TEM). A series of block copolymers with a range of compositions was prepared by atom transfer radical polymerization, comprising a polystyrene block and a poly(methyl methacrylate) block bearing chiral cholesteryl mesogens. Smectic ordering is observed as well as microphase separation of the block copolymer. Lamellar structures were observed for far larger volume fractions than for coil-coil copolymers (up to a volume fraction of liquid crystal block, f(LC) = 0.8). A sample with f(LC) = 0.86 exhibited a hexagonal-packed cylinder morphology, as confirmed by SAXS and TEM. The matrix comprised the liquid crystal block, with the mesogens forming smectic layers. For the liquid crystal homopolymer and samples with high f(LC), a smectic-smectic phase transition was observed below the clearing point. At low temperature, the smectic phase comprises coexisting domains with monolayer S-A,S-1 coexisting with interdigitated S-A,S-d domains. At high temperature a SA,1 phase is observed. This is the only structure observed for samples with lower f(LC). These unprecedented results point to the influence of block copolymer microphase separation on the smectic ordering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent work exploring the use of block copolymer vesicles and tubules is reviewed. The stability and toughness of block copolymer vesicles are enhanced compared to those formed by low molar mass amphiphiles. Functionality can also readily be introduced through the polymer chemistry or by incorporating additional components (for example pore-forming membrane proteins). This design flexibility leads to numerous potential applications in encapsulation, in targeted drug delivery, templating of inorganic materials and many others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ordering of block copolymers in thin films is reviewed, starting, from the fundamental principles and extending to recent promising developments as templates for nanolithography which may find important applications in the semiconductor industry. Ordering in supported thin films of symmetric and asymmetric AB diblock and ABA triblock copolymers is discussed, along with that of more complex materials such as ABC triblocks and liquid crystalline block copolymers Techniques to prepare thin films, and to characterise ordering within them, are summarized. Several methods to align Hock copolymer nanostructures, important in several applications are outlined A number of potential applications in nanolithography, production of porous materials, templating. and patterning of organic and inorganic materials are then presented. The influence of crystallization on the morphology of a block copolymer film is briefly discussed, as are structures in grafted block copolymer films. (C) 2009 Elsevier Ltd All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-assembly in aqueous solution of hybrid block copolymers consisting of amphiphilic β-strand peptide sequences flanked by one or two PEG chains was investigated by means of circular dichroism spectroscopy, small-angle X-ray scattering, and transmission electron microscopy. In comparison with the native peptide sequence, it was found that the peptide secondary structure was stabilized against pH variation in the di-and tri-block copolymers with PEG. Small-angle X-ray scattering indicated the presence of fibrillar structures, the dimensions of which are comparable to the estimated width of a β-strand (with terminal PEG chains in the case of the copolymers). Transmission electron microscopy on selectively stained and dried specimens shows directly the presence of fibrils. It is proposed that these fibrils result from the hierarchical self-assembly of peptide β-strands into helical tapes, which then stack into fibrils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new class of water-soluble, amphiphilic star block copolymers with a large number of arms was prepared by sequential atom transfer radical polymerization (ATRP) of n-butyl methacrylate (BMA) and poly( ethylene glycol) methyl ether methacrylate (PEGMA). As the macroinitiator for the ATRP, a 2-bromoisobutyric acid functionalized fourth-generation hyperbranched polyester (Boltorn H40) was used, which allowed the preparation of star polymers that contained on average 20 diblock copolymer arms. The synthetic concept was validated by AFM experiments, which allowed direct visualization of single molecules of the multiarm star block copolymers. DSC and SAXS experiments on bulk samples suggested a microphase-separated structure, in agreement with the core-shell architecture of the polymers. SAXS experiments on aqueous solutions indicated that the star block copolymers can be regarded as unimolecular micelles composed of a PBMA core and a diffuse PPEGMA corona. The ability of the polymers to encapsulate and release hydrophobic guests was evaluated using H-1 NMR spectroscopy. In dilute aqueous solution, these polymers act as unimolecular containers that can be loaded with up to 27 wt % hydrophobic guest molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ordered nanostructures are observed in the melt and solid state for a series of three peptide/PEG conjugates containing fragments of amyloid beta-peptides. These are conjugated to PEG with (M) over bar (n) = 3 300 g.mol(-1) and a melting temperature T-m = 45-50 degrees C. The morphology at room temperature is examined by AFM and POM. This shows spherulite formation for the weakly fibrillizing KLVFF-PEG sample but fibril formation for FFKLVFF-PEG. The fibrillization tendency of the latter is enhanced by multiple phenylalanine residues. Simultaneous SAXS and WAXS was used to investigate the morphology as a function of temperature. The secondary structure is probed by FTIR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two styrene-isoprene-styrene block copolymers Vector 4111 and 4113, exhibiting cylindrical (18 wt % PS) and spherical (16 wt % PS) morphology, respectively, have been examined under uniaxial elongation up to 200% strain. On the basis of stress-strain data, mechanical properties are compared for isotropic and oriented polystyrene domains. The structure at various stages of deformation has been determined from SAXS patterns in three planes and two principal deformation directions with respect to orientation. Samples showed a very high degree of hexagonal packing, resulting in an X-ray pattern taken parallel to the cylinder alignment approaching single crystal ordering. Cylinders were aligned with the closest packed planes parallel to film surface. Particular attention has been paid to a lattice deformation process occurring during the first stretching and relaxation cycle. For a copolymer with oriented cylindrical morphology the deformation was affine up to 120% strain. The microdomain spacing was calculated parallel and perpendicular to the stretching direction. The cylindrical microstructure orientation, quantified by Hermans' orientation factor reduced during elongation of oriented polymer, while the elongation of isotropic sample caused an increase of orientation. Deformation of all studied morphologies was reversible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three triblock copolymers of ethylene oxide and phenyl glycidyl ether, type E(m)G(n)E(m), where G = OCH2-CH(CH2OC6H5) and E = OCH2CH2, were synthesized and characterized by gel-permeation chromatography, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and NMR spectroscopy. Their association properties in aqueous solution were investigated by surface tensiometry and light scattering, yielding values of the critical micelle concentration (cmc), the hydrodynamic radius, and the association number. Gel boundaries in concentrated micellar solution were investigated by tube inversion, and for one copolymer, the temperature and frequency dependence of the dynamic moduli served to confirm and extend the phase diagram and to highlight gel properties. Small-angle X-ray scattering was used to investigate gel structure. The overall aim of the work was to define a block copolymer micellar system with better solubilization capacity for poorly soluble aromatic drugs than had been achieved so far by use of block copoly(oxyalkylene)s. Judged by the solubilization of griseofulvin in aqueous solutions of the E(m)G(n)E(m) copolymers, this aim was achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RAFT polymerization was used to prepare PMMA-b-PNIPAM copolymers. Two different chain transfer agents, tBDB and MCPDB, were used to mediate the sequential polymerizations. Micellar solutions and gels were prepared from the resulting copolymers in aqueous solution. When heated above T-c of PNIPAM (about 31 degrees C), DLS revealed that PNIPAM coronas collapsed, resulting in aggregation of the original micelles. The micellar gels underwent syneresis above T-c as water was expelled from the ordered gel structure, the lattice periodicity of which was determined by SANS. A large decrease in lattice spacing was observed above T-c. The gel became more viscoelastic at high temperature, as revealed by shear rheometry which showed a large increase in G".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review discusses liquid crystal phase formation by biopolymers in solution. Lyotropic mesophases have been observed for several classes of biopolymer including DNA, peptides, polymer/peptide conjugates, glycopolymers and proteoglycans. Nematic or chiral nematic (cholesteric) phases are the most commonly observed mesophases, in which the rod-like fibrils have only orientational order. Hexagonal columnar phases are observed for several systems (DNA, PBLG, polymer/peptide hybrids) at higher concentration. Lamellar (smectic) phases are reported less often, although there are examples such as the layer arrangement of amylopectin side chains in starch. Possible explanations for the observed structures are discussed. The biological role of liquid crystal phases for several of these systems is outlined. Commonly, they may serve as a template to align fibrils for defined structural roles when the biopolymer is extruded and dried, for instance in the production of silk by spiders or silkworms, or of chitin in arthropod shells. In other cases, liquid crystal phase formation may occur in vivo simply as a consequence of high concentration, for instance the high packing density of DNA within cell nuclei.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report describes the aqueous solution self-assembly of a series of polystyrene(m)-b-poly(L-lysine)n block copolymers (m = 8-10; n = 10-70). The polymers are prepared by ring-opening polymerization of epsilon-benzyloxycarbonyl-L-lysine N-carboxyanhydride using amine terminated polystyrene macroinitiators, followed by removal of the benzyloxycarbonyl side chain protecting groups. The critical micelle concentration of the block copolymers determined using the pyrene probe technique shows a parabolic dependence on peptide block length exhibiting a maximum at n = approximately 20 (m = 8) or n = approximately 60 (m = 10). The shape and size of the aggregates has been studied by dynamic and static light scattering, small-angle neutron scattering (SANS), and analytical ultracentrifugation (AUC). Surprisingly, Holtzer and Kratky analysis of the static light scattering results indicates the presence of nonspherical, presumably cylindrical objects independent of the poly(L-lysine)n block length. This is supported by SANS data, which can be fitted well by assuming cylindrical scattering objects. AUC analysis allows the molecular weight of the aggregates to be estimated as several million g/mol, corresponding to aggregation numbers of several 10s to 100s. These aggregation numbers agree with those that can be estimated from the length and diameter of the cylinders obtained from the scattering results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An atomic force microscopy investigation was carried out on various thick (30–120 nm) polymethyl methacrylate-bpolystyrene and poly(2-(dimethyl amino)ethyl methacrylate)-b-polystyrene films prepared via a grafting-from method. The structure of the films was examined with both topographic and phase imaging. Several different morphologies were observed including a perforated lamellar phase with irregular perforations. In addition, complementary small-angle X-ray scattering and reflectometry results measurements on a non-grafted polymer are presented.