6 resultados para CID

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In biological mass spectrometry (MS), two ionization techniques are predominantly employed for the analysis of larger biomolecules, such as polypeptides. These are nano-electrospray ionization [1, 2] (nanoESI) and matrix-assisted laser desorption/ionization [3, 4] (MALDI). Both techniques are considered to be “soft”, allowing the desorption and ionization of intact molecular analyte species and thus their successful mass-spectrometric analysis. One of the main differences between these two ionization techniques lies in their ability to produce multiply charged ions. MALDI typically generates singly charged peptide ions whereas nanoESI easily provides multiply charged ions, even for peptides as low as 1000 Da in mass. The production of highly charged ions is desirable as this allows the use of mass analyzers, such as ion traps (including orbitraps) and hybrid quadrupole instruments, which typically offer only a limited m/z range (< 2000–4000). It also enables more informative fragmentation spectra using techniques such as collisioninduced dissociation (CID) and electron capture/transfer dissociation (ECD/ETD) in combination with tandem MS (MS/MS). [5, 6] Thus, there is a clear advantage of using ESI in research areas where peptide sequencing, or in general, the structural elucidation of biomolecules by MS/MS is required. Nonetheless, MALDI with its higher tolerance to contaminants and additives, ease-of-operation, potential for highspeed and automated sample preparation and analysis as well as its MS imaging capabilities makes it an ionization technique that can cover bioanalytical areas for which ESI is less suitable. [7, 8] If these strengths could be combined with the analytical power of multiply charged ions, new instrumental configurations and large-scale proteomic analyses based on MALDI MS(/MS) would become feasible.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 1594, major decisions were made by the governors of London and the country about plays and playing. We need to learn what lay behind these events, such as what led James Burbage to build his Blackfriars theater in 1596. That initial fiasco might tell us much about what lay behind Shakespeare’s decision to join the new Chamberlain’s Men in 1594 and his subsequent commitment to them as a full-time playwright. When the Globe burned down in 1613, a majority of the shareholders decided to rebuild it at great cost, but Shakespeare withdrew. The rebuilding was old-fashioned thinking, reverting to the company’s desire, asserted in 1594, to play indoors in winter, which helps to clarify their decisions and Shakespeare’s own—to write plays rather than more long poems. The few surviving papers of the Privy Council and the London mayoralty from the time suggest that one of the two new companies of 1594 preferred to play indoors during the winter instead of at their allocated open playhouses in the suburbs. They tried to renew this traditional practice, first in 1594 and again in 1596 when James Burbage built the indoor Blackfriars playhouse for them. The renewal of the Globe in 1614 was part of the same thinking, although Shakespeare evidently opted out of the decision.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examines the relationship between community based organisations and marine and coastal resource management in the Western Indian Ocean Region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In der biologischen Massenspektrometrie (MS) werden überwiegend zwei Ionisationstechniken für die Analyse von grçßeren Biomolekfürlen wie Polypeptiden eingesetzt. Dies sind die Nano-Elektrospray-Ionisation[1,2] (nanoESI) und die matrixunterstfürtzte Laserdesorption/-ionisation[3, 4] (MALDI). Beide Techniken werden als „sanft“ bezeichnet, weil sie die Desorption und Ionisation von intakten Analytmolekfürlen und damit ihre erfolgreiche massenspektrometrische Analyse erlauben. Einer der wichtigsten Unterschiede zwischen diesen beiden Ionisationstechniken liegt in ihrer F�higkeit, mehrfach geladene Ionen zu erzeugen. MALDI erzeugt typischerweise einfach geladene Peptidionen, w�hrend nano- ESI leicht mehrfach geladene Ionen produziert, sogar für Peptide mit einer Masse von weniger als 1000 Da. Die Erzeugung von hoch geladenen Ionen ist wünschenswert, da dies die Verwendung von Massenanalysatoren wie Ionenfallen (inkl. Orbitraps) und Hybrid-Quadrupolinstrumenten ermçglicht, die typischerweise nur einen begrenzten m/z- Bereich (<2000–4000) bieten. Hohe Ladungszust�nde ermçglichen auch die Aufnahme von informativeren Fragmentionenspektren, wenn Methoden wie die kollisionsinduzierte Dissoziation (CID), die Elektroneneinfang-Dissoziation (ECD) und die Elektronentransfer-Dissoziation (ETD) in Kombination mit der Tandem-MS (MS/MS) verwendet werden.