71 resultados para CHARGED DIATOMIC-MOLECULES
em CentAUR: Central Archive University of Reading - UK
Resumo:
There is a recent interest to use inorganic-based magnetic nanoparticles as a vehicle to carry biomolecules for various biophysical applications, but direct attachment of the molecules is known to alter their conformation leading to attenuation in activity. In addition, surface immobilization has been limited to monolayer coverage. It is shown that alternate depositions of negatively charged protein molecules, typically bovine serum albumin (BSA) with a positively charged aminocarbohydrate template such as glycol chitosan (GC) on magnetic iron oxide nanoparticle surface as a colloid, are carried out under pH 7.4. Circular dichroism (CD) clearly reveals that the secondary structure of the entrapped BSA sequential depositions in this manner remains totally unaltered which is in sharp contrast to previous attempts. Probing the binding properties of the entrapped BSA using small molecules (Site I and Site II drug compounds) confirms for the first time the full retention of its biological activity as compared with native BSA, which also implies the ready accessibility of the entrapped protein molecules through the porous overlayers. This work clearly suggests a new method to immobilize and store protein molecules beyond monolayer adsorption on a magnetic nanoparticle surface without much structural alteration. This may find applications in magnetic recoverable enzymes or protein delivery.
Resumo:
The selective separation of whey proteins was studied using colloidal gas aphrons generated from the cationic surfactant cetyl trimethyl ammonium bromide (CTAB). From the titration curves obtained by zeta potential measurements of individual whey proteins, it was expected to selectively adsorb the major whey proteins, i.e., bovine serum albumin, alpha-lactalbumin, and beta-lactoglobulin to the aphrons and elute the remaining proteins (lactoferrin and lactoperoxidase) in the liquid phase. A number of process parameters including pH, ionic strength, and mass ratio of surfactant to protein (M-CTAB/M-TP) were varied in order to evaluate their effect on protein separation. Under optimum conditions (2 mmol/l CTAB, M-CTAB/M-TP = 0.26-0.35, pH 8, and ionic strength = 0.018 mol/l), 80-90% beta-lactoglobulin was removed from the liquid phase as a precipitate, while about 75% lactoferrin and lactoperoxidase, 80% bovine serum albumin, 95% immunoglobulin, and 65% alpha-lactalbumin were recovered in the liquid fraction. Mechanistic studies using zeta potential measurements and fluorescence spectroscopy proved that electrostatic interactions modulate only partially the selectivity of protein separation, as proteins with similar surface charges do not separate to the same extent between the two phases. The selectivity of recovery of beta-lactoglobulin probably occurs in two steps: the first being the selective interaction of the protein with opposite-charged surfactant molecules by means of electrostatic interactions, which leads to denaturation of the protein and subsequent formation and precipitation of the CTAB-beta-lactoglobulin complex. This is followed by the separation of CTAB-beta-lactoglobulin aggregates from the bulk liquid by flotation in the aphron phase. In this way, CGAs act as carriers which facilitate the removal of protein precipitate. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Mixing of oppositely charged amphiphilic molecules (catanionic mixing) offers an attractive strategy to produce morphologies different from those formed by individual molecules. We report here on the use of catanionic mixing of anticancer drug amphiphiles to construct multiwalled nanotubes containing a fixed and high drug loading. We found that the molecular mixing ratio, the solvent composition, the overall drug concentrations, as well as the molecular design of the studied amphiphiles are all important experimental parameters contributing to the tubular morphology. We believe these results demonstrate the remarkable potential that anticancer drugs could offer to self-assemble into discrete nanostructures and also provide important insight into the formation mechanism of nanotubes by catanionic mixtures. Our preliminary animal studies reveal that the CPT nanotubes show significantly prolonged retention time in the tumor site after intratumoral injection.
Resumo:
Ab initio calculations of the energy have been made at approximately 150 points on the two lowest singlet A' potential energy surfaces of the water molecule, 1A' and 1A', covering structures having D∞h, C∞v, C2v and Cs symmetries. The object was to obtain an ab initio surface of uniform accuracy over the whole three-dimensional coordinate space. Molecular orbitals were constructed from a double zeta plus Rydberg basis, and correlation was introduced by single and double excitations from multiconfiguration states which gave the correct dissociation behaviour. A two-valued analytical potential function has been constructed to fit these ab initio energy calculations. The adiabatic energies are given in our analytical function as the eigenvalues of a 2 2 matrix, whose diagonal elements define two diabatic surfaces. The off-diagonal element goes to zero for those configurations corresponding to surface intersections, so that our adiabatic surface exhibits the correct Σ/II conical intersections for linear configurations, and singlet/triplet intersections of the O + H2 dissociation fragments. The agreement between our analytical surface and experiment has been improved by using empirical diatomic potential curves in place of those derived from ab initio calculations.
Resumo:
We explore the role of crystallinity and inter- or intramolecular forces in chitosan for its solubility in water and demonstrate the expansion of its solubility to a wider pH range. Due to its semicrystalline nature, derived mainly from inter- and intramolecular hydrogen bonds, chitosan is water-soluble only at pH < 6. In acidic conditions, its amino groups can be partially protonated resulting in repulsion between positively charged macrochains, thereby allowing diffusion of water molecules and subsequent solvation of macromolecules. We show that chemical disruption of chitosan crystallinity by partial re-acetylation or physical disruption caused by the addition of urea and guanidine hydrochloride broadens the pH-solubility range for this biopolymer.
Resumo:
The history of using vesicular systems for drug delivery to and through skin started nearly three decades ago with a study utilizing phospholipid liposomes to improve skin deposition and reduce systemic effects of triamcinolone acetonide. Subsequently, many researchers evaluated liposomes with respect to skin delivery, with the majority of them recording localized effects and relatively few studies showing transdermal delivery effects. Shortly after this, Transfersomes were developed with claims about their ability to deliver their payload into and through the skin with efficiencies similar to subcutaneous administration. Since these vesicles are ultradeformable, they were thought to penetrate intact skin deep enough to reach the systemic circulation. Their mechanisms of action remain controversial with diverse processes being reported. Parallel to this development, other classes of vesicles were produced with ethanol being included into the vesicles to provide flexibility (as in ethosomes) and vesicles were constructed from surfactants and cholesterol (as in niosomes). Thee ultradeformable vesicles showed variable efficiency in delivering low molecular weight and macromolecular drugs. This article will critically evaluate vesicular systems for dermal and transdermal delivery of drugs considering both their efficacy and potential mechanisms of action.
Resumo:
A multiple factor parametrization is described to permit the efficient calculation of collision efficiency (E) between electrically charged aerosol particles and neutral cloud droplets in numerical models of cloud and climate. The four-parameter representation summarizes the results obtained from a detailed microphysical model of E, which accounts for the different forces acting on the aerosol in the path of falling cloud droplets. The parametrization's range of validity is for aerosol particle radii of 0.4 to 10 mu m, aerosol particle densities of I to 2.0 g cm(-3), aerosol particle charges from neutral to 100 elementary charges and drop radii from 18.55 to 142 mu m. The parametrization yields values of E well within an order of magnitude of the detailed model's values, from a dataset of 3978 E values. Of these values 95% have modelled to parametrized ratios between 0.5 and 1.5 for aerosol particle sizes ranging between 0.4 and 2.0 mu m, and about 96% in the second size range. This parametrization speeds up the calculation of E by a factor of similar to 10(3) compared with the original microphysical model, permitting the inclusion of electric charge effects in numerical cloud and climate models.
Resumo:
General expressions for the force constants and dipole‐moment derivatives of molecules are derived, and the problems arising in their practical application are reviewed. Great emphasis is placed on the use of the Hartree–Fock function as an approximate wavefunction, and a number of its properties are discussed and re‐emphasised. The main content of this paper is the development of a perturbed Hartree–Fock theory that makes possible the direct calculation of force constants and dipole‐moment derivatives from SCF–MO wavefunctions. Essentially the theory yields ∂ϕi / ∂RJα, the derivative of an MO with respect to a nuclear coordinate.
Resumo:
Normal coordinate calculations of XH4 and XH3 molecules are reviewed and discussed. It is shown that for most of these molecules the true values of the force constants in the most General Harmonic Force Field can be uniquely determined only by making use of vibration-rotation interaction constants. It is emphasized that without these extra data the GFF is not determined. The results are compared with various model force fields for these molecules.
Resumo:
Analytical potential energy functions which are valid at all dissociation limits have been derived for the ground states of SO2 and O3. The procedure involves minimizing the errors between the observed vibrational spectra and spectra calculated by a variational procedure. Good agreement is obtained between the observed and calculated spectra for both molecules. Comparisons are made between anharmonic force fields, previously determined from the spectral data, and the force fields obtained by differentiating the derived analytical functions at the equilibrium configurations.
Resumo:
Analytical potential energy functions are reported for HOX (X=F, Cl, Br, I). The surface for HOF predicts two metastable minima as well as the equilibrium configuration. These correspond to HFO (bent) and OHF (linear). Ab initio calculations performed for the HOF surface confirm these predictions. Comparisons are drawn between the two sets of results, and a vibrational analysis is undertaken for the hydrogen bonded OHF species. For HOCl, one further minimum is predicted, corresponding to HClO (bent), the parameters for which compare favourably with those reported from ab initio studies. In contrast, only the equilibrium configurations are predicted to be stable for HOBr and HOI.
Resumo:
A simple diagrammatic rule is presented for determining the rotational selection rules governing transitions between any pair of vibronic states in electric dipole spectra of symmetric top molecules. The rule is useful in cases where degenerate vibronic levels with first-order Coriolis splittings occur, because it gives immediately the selection rule for the (+l) and (-l) components in any degenerate state. The rule is also helpful in determining the symmetry species and the effective zeta constants in overtone and combination levels involving degenerate vibrations. Particular attention is devoted to the conventions concerning the signs of zeta constants.
Resumo:
The perturbed Hartree–Fock theory developed in the preceding paper is applied to LiH, BH, and HF, using limited basis‐set SCF–MO wavefunctions derived by previous workers. The calculated values for the force constant ke and the dipole‐moment derivative μ(1) are (experimental values in parentheses): LiH, ke = 1.618(1.026)mdyn/Å,μ(1) = −18.77(−2.0±0.3)D/ÅBH,ke = 5.199(3.032)mdyn/Å,μ(1) = −1.03(−)D/Å;HF,ke = 12.90(9.651)mdyn/Å,μ(1) = −2.15(+1.50)D/Å. The values of the force on the proton were calculated exactly and according to the Hellmann–Feynman theorem in each case, and the discrepancies show that none of the wavefunctions used are close to the Hartree–Fock limit, so that the large errors in ke and μ(1) are not surprising. However no difficulties arose in the perturbed Hartree–Fock calculation, so that the application of the theory to more accurate wavefunctions appears quite feasible.