33 resultados para CELL DEVELOPMENT

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

GIMAP (GTPase of the immunity-associated protein family) proteins are a family of putative GTPases believed to be regulators of cell death in lymphomyeloid cells. GIMAP1 was the first reported member of this gene family, identified as a gene up-regulated at the RNA level in the spleens of mice infected with the malarial parasite, Plasmodium chabaudi. Methods A monoclonal antibody against mouse GIMAP1 was developed and was used to analyse the expression of the endogenous protein in tissues of normal mice and in defined sub-populations of cells prepared from lymphoid tissues using flow cytometry. It was also used to assess the expression of GIMAP1 protein after infection and/or immunization of mice with P. chabaudi. Real-time PCR analysis was employed to measure the expression of GIMAP1 for comparison with the protein level analysis. Results GIMAP1 protein expression was detected in all lineages of lymphocytes (T, B, NK), in F4/80+ splenic macrophages and in some lymphoid cell lines. Additional evidence is presented suggesting that the strong expression by mature B cells of GIMAP1 and other GIMAP genes and proteins seen in mice may be a species-dependent characteristic. Unexpectedly, no increase was found in the expression of GIMAP1 in P. chabaudi infected mice at either the mRNA or protein level, and this remained so despite applying a number of variations to the protocol. Conclusion The model of up-regulation of GIMAP1 in response to infection/immunization with P. chabaudi is not a robustly reproducible experimental system. The GIMAP1 protein is widely expressed in lymphoid cells, with an interesting increase in expression in the later stages of B cell development. Alternative approaches will be required to define the functional role of this GTPase in immune cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-resolution ensemble simulations (Δx = 1 km) are performed with the Met Office Unified Model for the Boscastle (Cornwall, UK) flash-flooding event of 16 August 2004. Forecast uncertainties arising from imperfections in the forecast model are analysed by comparing the simulation results produced by two types of perturbation strategy. Motivated by the meteorology of the event, one type of perturbation alters relevant physics choices or parameter settings in the model's parametrization schemes. The other type of perturbation is designed to account for representativity error in the boundary-layer parametrization. It makes direct changes to the model state and provides a lower bound against which to judge the spread produced by other uncertainties. The Boscastle has genuine skill at scales of approximately 60 km and an ensemble spread which can be estimated to within ∼ 10% with only eight members. Differences between the model-state perturbation and physics modification strategies are discussed, the former being more important for triggering and the latter for subsequent cell development, including the average internal structure of convective cells. Despite such differences, the spread in rainfall evaluated at skilful scales is shown to be only weakly sensitive to the perturbation strategy. This suggests that relatively simple strategies for treating model uncertainty may be sufficient for practical, convective-scale ensemble forecasting.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One of the major factors contributing to the failure of new wheat varieties is seasonal variability in end-use quality. Consequently, it is important to produce varieties which are robust and stable over a range of environmental conditions. Recently developed sample preparation methods have allowed the application of FT-IR spectroscopic imaging methods to the analysis of wheat endosperm cell wall composition, allowing the spatial distribution of structural components to be determined without the limitations of conventional chemical analysis. The advantages of the methods, described in this paper, are that they determine the composition of endosperm cell walls in situ and with minimal modification during preparation. Two bread-making wheat cultivars, Spark and Rialto, were selected to determine the impact of environmental conditions on the cell-wall composition of the starchy endosperm of the developing and mature grain, focusing on the period of grain filling (starting at about 14 days after anthesis). Studies carried out over two successive seasons show that the structure of the arabinoxylans in the endosperm cell walls changes from a highly branched form to a less branched form. Furthermore, during development the rate of restructuring was faster when the plants were grown at higher temperature with restricted water availability from 14 days after anthesis with differences in the rate of restructuring occurring between the two cultivars.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The ability of the cardiac myocyte to divide ceases shortly after birth. Thus, following severe injury, e.g., during myocardial infarction, the mature heart is unable to regenerate new tissue to replace the dead or damaged tissue. The identification of the molecules controlling the cessation of myocyte cell division may lead to therapeutic strategies which aim to re-populate the damaged myocardial area. Hence, we have determined the cell cycle profile, expressions and activities of the cyclin-dependent kinase inhibitors (CDKIs), p21CIP1 and p27KIP1, during rat ventricular myocyte development. Fluorescent activated cell sorting (FACS) analyses showed the percentage of S phase myocytes to be decreased significantly throughout development, concomitant with a significant increase in the percentage of G0/G1 and G2/M phase cells. The expression of p21CIP1 and p27KIP1 increased significantly throughout cardiac development and complexed differentially with a number of cyclins and CDKs. Furthermore, an adult myocyte extract reduced neonatal myocyte CDK2 kinase activity significantly (>30%, p<0.05) whereas immunodepletion of p21CIP1 from adult lysates restored CDK2 kinase activity. Thus, p21CIP1 and p27KIP1 may be important for the withdrawal of cardiac myocytes from the cell cycle and for maintaining the G0/G1 and G2/M phase blockades.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The major component of skeletal muscle is the myofibre. Genetic intervention inducing over-enlargement of myofibres beyond a certain threshold through acellular growth causes a reduction in the specific tension generating capacity of the muscle. However the physiological parameters of a genetic model that harbours reduced skeletal muscle mass have yet to be analysed. Genetic deletion of Meox2 in mice leads to reduced limb muscle size and causes some patterning defects. The loss of Meox2 is not embryonically lethal and a small percentage of animals survive to adulthood making it an excellent model with which to investigate how skeletal muscle responds to reductions in mass. In this study we have performed a detailed analysis of both late foetal and adult muscle development in the absence of Meox2. In the adult, we show that the loss of Meox2 results in smaller limb muscles that harbour reduced numbers of myofibres. However, these fibres are enlarged. These myofibres display a molecular and metabolic fibre type switch towards a more oxidative phenotype that is induced through abnormalities in foetal fibre formation. In spite of these changes, the muscle from Meox2 mutant mice is able to generate increased levels of specific tension compared to that of the wild type.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work investigated the role of rpoS in the development of increased cell envelope resilience and enhanced pressure resistance in stationary phase cells of Escherichia coli. Loss of both colony-forming ability and membrane integrity, measured as uptake of propidium iodide (PI), occurred at lower pressures in E. coli BW3709 (rpoS) than in the parental strain (BW2952). The rpoS mutant also released much higher concentrations of protein under pressure than the parent. We propose that RpoS-regulated functions are responsible for the increase in membrane resilience as cells enter stationary phase and that this plays a major role in the development of pressure resistance. Strains from the Keio collection with mutations in two RpoS-regulated genes, cfa (cyclopropane fatty acyl phospholipid synthase) and osmB (outer membrane lipoprotein), were significantly more pressure-sensitive and took up more PI than the parent strains with cfa having the greatest effect. Mutations in the bolA morphogene and other RpoS-regulated lipoprotein genes (osmC, osmE, osmY and ybaY) had no effect on pressure resistance. The cytoplasmic membranes of the rpoS mutant failed to reseal after pressure treatment and strains with mutations in osmB and nlpI (new lipoprotein) were also somewhat impaired in the ability to reseal their membranes. The cfa mutant, though pressure-sensitive, was unaffected in membrane resealing implying that the initial transient permeabilization event is critical for loss of viability rather than the failure to reseal. The enhanced pressure sensitivity of polA, recA and xthA mutants suggested that DNA may be a target of oxidative stress in pressure-treated cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The presence of resident Langerhans cells (LCs) in the epidermis makes the skin an attractive target for DNA vaccination. However, reliable animal models for cutaneous vaccination studies are limited. We demonstrate an ex vivo human skin model for cutaneous DNA vaccination which can potentially bridge the gap between pre-clinical in vivo animal models and clinical studies. Cutaneous transgene expression was utilised to demonstrate epidermal tissue viability in culture. LC response to the culture environment was monitored by immunohistochemistry. Full-thickness and split-thickness skin remained genetically viable in culture for at least 72 h in both phosphate-buffered saline (PBS) and full organ culture medium (OCM). The epidermis of explants cultured in OCM remained morphologically intact throughout the culture duration. LCs in full-thickness skin exhibited a delayed response (reduction in cell number and increase in cell size) to the culture conditions compared with split-thickness skin, whose response was immediate. In conclusion, excised human skin can be cultured for a minimum of 72 h for analysis of gene expression and immune cell activation. However, the use of split-thickness skin for vaccine formulation studies may not be appropriate because of the nature of the activation. Full-thickness skin explants are a more suitable model to assess cutaneous vaccination ex vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The L-glutamate transporter GLT-1 is an abundant CNS membrane protein of the excitatory amino acid transporter (EAAT) family which controls extracellular L-glutamate levels and is important in limiting excitotoxic neuronal death. Using RT-PCR, we have determined that four mRNAs encoding GLT-1 exist in mouse brain, with the potential to encode four GLT-1 isoforms that differ in their N- and C-termini. We expressed all four isoforms (termed MAST-KREK, MPK-KREK, MAST-DIETCI and MPK-DIETCI according to amino acid sequence) in a range of cell lines and primary astrocytes and show that each isoform can reach the cell surface. In transfected HEK-293 or COS-7 cells, all four isoforms support high-affinity sodium-dependent L-glutamate uptake with identical pharmacological and kinetic properties. Inserting a viral epitope (V5, HA or FLAG) into the second extracellular domain of each isoform allowed co-immunoprecipitation and tr-FRET studies using transfected HEK-293 cells. Here we show for the first time that each of the four isoforms are able to combine to form homomeric and heteromeric assemblies, each of which are expressed at the cell surface of primary astrocytes. After activation of protein kinase C by phorbol ester, V5-tagged GLT-1 is rapidly removed from the cell surface of HEK-293 cells and degraded. This study provides direct biochemical evidence for oligomeric assembly of GLT-1 and reports the development of novel tools to provide insight into the trafficking of GLT-1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Mammalian cardiac myocytes withdraw from the cell cycle during post-natal development, resulting in a non-proliferating, fully differentiated adult phenotype that is unable to repair damage to the myocardium, such as occurs following a myocardial infarction. We and others previously have shown that forced expression of certain cell cycle molecules in adult cardiac myocytes can promote cell cycle progression and division in these cells. The mitotic serine/threonine kinase, Polo-like kinase-1 (Plk1), is known to phosphorylate and activate a number of mitotic targets, including Cdc2/Cyclin B1, and to promote cell division. PRINCIPAL FINDINGS: The mammalian Plk family are all differentially regulated during the development of rat cardiac myocytes, with Plk1 showing the most dramatic decrease in both mRNA, protein and activity in the adult. We determined the potential of Plk1 to induce cell cycle progression and division in cultured rat cardiac myocytes. A persistent and progressive loss of Plk1 expression was observed during myocyte development that correlated with the withdrawal of adult rat cardiac myocytes from the cell cycle. Interestingly, when Plk1 was over-expressed in cardiac myocytes by adenovirus infection, it was not able to promote cell cycle progression, as determined by cell number and percent binucleation. CONCLUSIONS: We conclude that, in contrast to Cdc2/Cyclin B1 over-expression, the forced expression of Plk1 in adult cardiac myocytes is not sufficient to induce cell division and myocardial repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Germin is a homopentameric glycoprotein, the synthesis of which coincides with the onset of growth in germinating wheat embryos. There have been detailed studies of germin structure, biosynthesis, homology with other proteins, and of its value as a marker of wheat development. Germin isoforms associated with the apoplast have been speculated to have a role in embryo hydration during maturation and germination. Antigenically related isoforms of germin are present during germination in all of the economically important cereals studied, and the amounts of germin-like proteins and coding elements have been found to undergo conspicuous change when salt-tolerant higher plants are subjected to salt stress. In this report, we describe how circumstantial evidence arising from unrelated studies of barley oxalate oxidase and its coding elements have led to definitive evidence that the germin isoform made during wheat germination is an oxalate oxidase. Establishment of links between oxalate degradation, cereal germination, and salt tolerance has significant implications for a broad range of studies related to development and adaptation in higher plants. Roles for germin in cell wall biochemistry and tissue remodeling are discussed, with special emphasis on the generation of hydrogen peroxide during germin-induced oxidation of oxalate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The clonal expansion of antigen-specific CD8+ T cells in response to microbial infections is essential for adaptive immunity. Although IL-2 has been considered to be primarily responsible for this process, quantitatively normal expansion occurs in the absence of IL-2 receptor signaling. Here, we show that ligating CD27 on CD8+ T cells that have been stimulated through the T cell receptor causes their expansion in the absence of IL-2 by mediating two distinct cellular processes: enhancing cell cycling and promoting cell survival by maintaining the expression of IL-7 receptor alpha. This pathway for clonal expansion of the CD8+ T cell is not associated with the development of a capacity either for production of IFN-gamma or for cytotoxic T lymphocyte function and, therefore, is uncoupled from differentiation. Furthermore, ligating CD27 increases the threshold concentration at which IL-2 induces IFN-gamma-producing capability by the CD8+ T cell, suggesting that CD27 signaling may suppress effector differentiation. Finally, CD8+ T cells that have been stimulated by the TCR/CD27 pathway maintain their capacity for subsequent expansion and effector differentiation in response to a viral challenge in vivo. Thus, the TCR/CD27 pathway enables the CD8+ T cell to replicate by a process of self-renewal, which may contribute to the continuous generation of new effector CD8+ T cells in persistent viral infections.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Wnt family of secreted signalling molecules controls a wide range of developmental processes in all metazoans. In this investigation we concentrate on the role that members of this family play during the development of (1) the somites and (2) the neural crest. (3) We also isolate a novel component of the Wnt signalling pathway called Naked cuticle and investigate the role that this protein may play in both of the previously mentioned developmental processes. (1) In higher vertebrates the paraxial mesoderm undergoes a mesenchymal-to-epithelial transformation to form segmentally organised structures called somites. Experiments have shown that signals originating from the ectoderm overlying the somites or from midline structures are required for the formation of the somites, but their identity has yet to be determined. Wnt6 is a good candidate as a somite epithelialisation factor from the ectoderm since it is expressed in this tissue. In this study we show that injection of Wnt6-producing cells beneath the ectoderm at the level of the segmental plate or lateral to the segmental plate leads to the formation of numerous small epithelial somites. We show that Wnts are indeed responsible for the epithelialisation of somites by applying Wnt antagonists which result in the segmental plate being unable to form somites. These results show that Wnt6, the only member of this family to be localised to the chick paraxial ectoderm, is able to regulate the development of epithelial somites and that cellular organisation is pivotal in the execution of the differentiation programmes. (2) The neural crest is a population of multipotent progenitor cells that arise from the neural ectoderm in all vertebrate embryos and form a multitude of derivatives including the peripheral sensory neurons, the enteric nervous system, Schwann cells, pigment cells and parts of the craniofacial skeleton. The induction of the neural crest relies on an ectodermally derived signal, but the identity of the molecule performing this role in amniotes is not known. Here we show that Wnt6, a protein expressed in the ectoderm, induces neural crest production. (3) The intracellular response to Wnt signalling depends on the choice of signalling cascade activated in the responding cell. Cells can activate either the canonical pathway that modulates gene expression to control cellular differentiation and proliferation, or the non-canonical pathway that controls cell polarity and movement (Pandur et al. 2002b). Recent work has identified the protein Naked cuticle as an intracellular switch promoting the non-canonical pathway at the expense of the canonical pathway. We have cloned chick Naked cuticle-1 (cNkd1) and demonstrate that it is expressed in a dynamic manner during early embryogenesis. We show that it is expressed in the somites and in particular regions where cells are undergoing movement. Lastly our study shows that the expression of cNkd1 is regulated by Wnt expression originating from the neural tube. This study provides evidence that non-canonical Wnt signalling plays a part in somite development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

variety of transcription factors including Wilms tumor gene (Wt-1), steroidogenic factor 1 (Sf-1), dosage-sensitive sex reversal, adrenal hypoplasia congenita on the X-chromosome, Gene 1 (Dax-1), and pre-B-cell transcription factor 1 (Pbx1) have been defined as necessary for regular adrenocortical development. However, the role of Pbx1 for adrenal growth and function in the adult organism together with the molecular relationship between Pbx1 and these other transcription factors have not been characterized. We demonstrate that Pbx haploinsufficiency (Pbx1(+/-)) in mice is accompanied by a significant lower adrenal weight in adult animals compared with wild-type controls. Accordingly, baseline proliferating cell nuclear antigen levels are lower in Pbx1(+/-) mice, and unilateral adrenalectomy results in impaired contralateral compensatory adrenal growth, indicating a lower proliferative potential in the context of Pbx1 haploinsufficiency. In accordance with the key role of IGFs in adrenocortical proliferation and development, real-time RT-PCR demonstrates significant lower expression levels of the IGF-I receptor, and up-regulation of IGF binding protein-2. Functionally, Pbx1(+/-) mice display a blunted corticosterone response after ACTH stimulation coincident with lower adrenal expression of the ACTH receptor (melanocortin 2 receptor, Mc2-r). Mechanistically, in vitro studies reveal that Pbx1 and Sf-1 synergistically stimulates Mc2-r promoter activity. Moreover, Sf-1 directly activates the Pbx1 promoter activity in vitro and in vivo. Taken together, these studies provide evidence for a role of Pbx1 in the maintenance of a functional adrenal cortex mediated by synergistic actions of Pbx1 and Sf-1 in the transcriptional regulation of the critical effector of adrenocortical differentiation, the ACTH receptor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, exciting progress has been made towards unravelling the complex intraovarian control mechanisms that, in concert with systemic signals, coordinate the recruitment, selection and growth of follicles from the primordial stage through to ovulation and corpus luteum formation. A plethora of growth factors, many belonging to the transforming growth factor-beta (TGF-beta) superfamily, are expressed by ovarian somatic cells and oocytes in a developmental, stage-related manner and function as intraovarian regulators of folliculogenesis. Two such factors, bone morphogenetic proteins, RMP-4 and BMP-7, are expressed by ovarian stromal cells and/or theca cells and have recently been implicated as positive regulators of the primordial-to-primary follicle transition. In contrast, evidence indicates a negative role for anti-Mullerian hormone (AMH, also known as Mullerian-inhibiting substance) of pre-granulosa/granulosa cell origin in this key event and subsequent progression to the antral stage. Two other TGF-beta superfamily members, growth and differentiation factor-9 (GDF-9) and BMP-15 (also known as GDF-9B) are expressed in an oocyte-specific manner from a very early stage and play key roles in promoting follicle growth beyond the primary stage; mice with null mutations in the gdf-9 gene or ewes with inactivating mutations in gdf-9 or bmp-15 genes are infertile with follicle development arrested at the primary stage. Studies on later stages of follicle development indicate positive roles for granulosa cell-derived activin, BMP-2, -5 and -6, theca cell-derived BMP-2, -4 and -7 and oocyte-derived BMP-6 in promoting granulosa cell proliferation, follicle survival and prevention of premature luteinization and/or atresia. Concomitantly, activin, TGF-beta and several BMPs may exert paracrine actions on theca cells to attenuate LH-dependent androgen production in small to medium-size antral follicles. Dominant follicle selection in monovular species may depend on differential FSH sensitivity amongst a growing cohort of small antral follicles. Changes in intrafollicular activins, GDF-9, AMH and several BMPs may contribute to this selection process by modulating both FSH- and IGF-dependent signalling pathways in granulosa cells. Activin may also play a positive role in oocyte maturation and acquisition of developmental competence. in addition to its endocrine role to suppress FSH secretion, increased output of inhibin by the selected dominant follicle(s) may upregulate LH-induced androgen secretion that is required to sustain a high level of oestradiol secretion during the pre-ovulatory phase. Advances in our understanding of intraovarian regulatory mechanisms should facilitate the development of new approaches for monitoring and manipulating ovarian function and improving fertility in domesticated livestock, endangered species and man.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Development of external genitalia in mammalian embryos requires tight coordination of a complex series of morphogenetic events involving outgrowth, proximodistal and dorsoventral patterning, and epithelial tubulogenesis. Hypospadias is a congenital defect of the external genitalia that results from failure of urethral tube closure. Although this is the second most common birth defect in humans, affecting one in every 250 children, the molecular mechanisms that regulate morphogenesis of the mammalian urethra are poorly understood. We report that mice lacking the IIIb isoform of fibroblast growth factor receptor 2 (Fgfr2) exhibit severe hypospadias. Urethral signaling regions, as indicated by Shh and Fgf8 expression, are established in Fgfr2-IIIb null mice; however, cell proliferation arrests prematurely and maturation of the urethral epithelium is disrupted. Fgfr2-IIIb(-/-) mutants fail to maintain the progenitor cell population required for uroepithelial renewal during tubular morphogenesis. In addition, we show that antagonism of the androgen receptor (AR) leads to loss of Fgfr2-IIIb and Fgf10 expression in the urethra, and an associated hypospadias phenotype, suggesting that these genes are downstream targets of AR during external genital development. Genitourinary defects resulting from disruption of AR activity, by either genetic or environmental factors, may therefore involve negative regulation of the Fgfr2 pathway. This represents the first example of how the developing genitourinary system integrates cues from systemically circulating steroid hormones with a locally expressed growth factor pathway.