2 resultados para CELL DEHYDRATION

em CentAUR: Central Archive University of Reading - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a soil dries, the earthworms in that soil dehydrate and become less active. Moisture stress may weaken an earthworm, lowering the radial pressure that the animal can produce. This possibility was investigated for the earthworm Aporrectodea caliginosa (Savigny). Pressures were compared for saturated earthworms (worms taken from saturated soil) and stressed earthworms (worms that had been partially dehydrated by leaving them in dry soil). A load cell was used to record the forces that earthworms produced as they moved through artificial burrows (holes that had been drilled through blocks of aluminium or Perspex). The radial pressure was calculated using the forces exerted and the dimensions of the artificial burrows. There was a negative correlation between burrow diameter and radial pressure, although radial pressure was independent of the length of the block through which the earthworms had burrowed. The highest radial pressures were produced by the anterior segments of the animal. Partial dehydration caused the earthworms to become quiescent, but did not decrease the radial pressure that the earthworms produced. It is suggested that coelomic fluid is retained in the anterior segments while the rest of the animal dehydrates. Dehydrated earthworms became lethargic, and we suggest that lethargy is due to the loss of coelomic fluid from the posterior segments. Coelomic fluid is known to be lost through dorsal pores. In burrowing species of earthworm such as Aporrectodea caliginosa, these pores are only present on the posterior segments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Petal development and senescence entails a normally irreversible process. It starts with petal expansion and pigment production, and ends with nutrient remobilization and ultimately cell death. In many species this is accompanied by petal abscission. Post-harvest stress is an important factor in limiting petal longevity in cut flowers and accelerates some of the processes of senescence such as petal wilting and abscission. However, some of the effects of moderate stress in young flowers are reversible with appropriate treatments. Transcriptomic studies have shown that distinct gene sets are expressed during petal development and senescence. Despite this, the overlap in gene expression between developmental and stress-induced senescence in petals has not been fully investigated in any species. Here a custom-made cDNA microarray from Alstroemeria petals was used to investigate the overlap in gene expression between developmental changes (bud to first sign of senescence) and typical post-harvest stress treatments. Young flowers were stressed by cold or ambient temperatures without water followed by a recovery and rehydration period. Stressed flowers were still at the bud stage after stress treatments. Microarray analysis showed that ambient dehydration stress accelerates many of the changes in gene expression patterns that would normally occur during developmental senescence. However, a higher proportion of gene expression changes in response to cold stress were specific to this stimulus and not senescence related. The expression of 21 transcription factors was characterized, showing that overlapping sets of regulatory genes are activated during developmental senescence and by different stresses.