5 resultados para CATHEPSIN-A

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Chronic fatigue syndrome (CFS) is an increasing medical phenomenon of unknown aetiology leading to high levels of chronic morbidity. Of the many hypotheses that purport to explain this disease, immune system activation, as a central feature, has remained prominent but unsubstantiated. Supporting this, a number of important cytokines have previously been shown to be over-expressed in disease subjects. The diagnosis of CFS is highly problematic since no biological markers specific to this disease have been identified. The discovery of genes relating to this condition is an important goal in seeking to correctly categorize and understand this complex syndrome. OBJECTIVE: The aim of this study was to screen for changes in gene expression in the lymphocytes of CFS patients. METHODS: 'Differential Display' is a method for comparing mRNA populations for the induction or suppression of genes. In this technique, mRNA populations from control and test subjects can be 'displayed' by gel electrophoresis and screened for differing banding patterns. These differences are indicative of altered gene expression between samples, and the genes that correspond to these bands can be cloned and identified. Differential display has been used to compare expression levels between four control subjects and seven CFS patients. RESULTS: Twelve short expressed sequence tags have been identified that were over-expressed in lymphocytes from CFS patients. Two of these correspond to cathepsin C and MAIL1 - genes known to be upregulated in activated lymphocytes. The expression level of seven of the differentially displayed sequences have been verified by quantifying relative level of these transcripts using TAQman quantitative PCR. CONCLUSION: Taken as a whole, the identification of novel gene tags up-regulated in CFS patients adds weight to the idea that CFS is a disease characterized by subtle changes in the immune system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Psoralens are well-known photosensitizers, and 8- methoxypsoralen and 4,5',8-trimethylpsoralen are widely used in photomedicine as "psoralens plus UVA therapy" (PUVA), in photopheresis, and in sterilization of blood preparations. In an attempt to improve the therapeutic efficiency of PUVA therapy and photopheresis, four poly(ethylene glycol) (PEG)-psoralen conjugates were synthesized to promote tumor targeting by the enhanced permeability and retention (EPR) effect. Peptide linkers were used to exploit specific enzymatic cleavage by lysosomal proteases. A new psoralen, 4-hydroxymethyl-4', 8-dimethylpsoralen (6), suitable for polymer conjugation was synthesized. The hydroxy group allowed exploring different strategies for PEG conjugation, and linkages with different stability such ester or urethanes were obtained. PEG (5 kDa) was covalently conjugated to the new psoralen derivative using four different linkages, namely, (i) direct ester bond (7), (ii) ester linkage with a peptide spacer (8), (iii) a carbamic linker (9), and (iv) a carbamic linker with a peptide spacer (12). The stability of these new conjugates was assessed at different pHs, in plasma and following incubation with cathepsin B. Conjugates 7 and 8 were rapidly hydrolyzed in plasma, while 9 was stable in buffer and in the presence of cathepsin B. As expected, only the conjugates containing the peptide linker released the drug in presence of cathepsin B. In vitro evaluation of the cytotoxic activity in the presence and absence of light was carried out in two cell lines (MCF-7 and A375 cells). Conjugates 7 and 8 displayed a similar activity to the free drug (probably due to the low stability of the ester linkage). Interestingly, the conjugates containing the carbamate linkage (9 and 12) were completely inactive in the dark (IC50 > 100 mu M in both cell lines). However, antiproliferative activity become apparent after UV irradiation. Conjugate 12 appears to be the most promising for future in vivo evaluation, since it was relatively stable in plasma, which should allow tumor targeting and drug release to occur by cathepsin B-mediated hydrolysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND/AIMS: Cathepsin S, a protein coded by the CTSS gene, is implicated in adipose tissue biology--this protein enhances adipose tissue development. Our hypothesis is that common variants in CTSS play a role in body weight regulation and in the development of obesity and that these effects are influenced by dietary factors--increased by high protein, glycemic index and energy diets. METHODS: Four tag SNPs (rs7511673, rs11576175, rs10888390 and rs1136774) were selected to capture all common variation in the CTSS region. Association between these four SNPs and several adiposity measurements (BMI, waist circumference, waist for given BMI and being a weight gainer-experiencing the greatest degree of unexplained annual weight gain during follow-up or not) given, where applicable, both as baseline values and gain during the study period (6-8 years) were tested in 11,091 European individuals (linear or logistic regression models). We also examined the interaction between the CTSS variants and dietary factors--energy density, protein content (in grams or in % of total energy intake) and glycemic index--on these four adiposity phenotypes. RESULTS: We found several associations between CTSS polymorphisms and anthropometric traits including baseline BMI (rs11576175 (SNP N°2), p = 0.02, β = -0.2446), and waist change over time (rs7511673 (SNP N°1), p = 0.01, β = -0.0433 and rs10888390 (SNP N°3), p = 0.04, β = -0.0342). In interaction with the percentage of proteins contained in the diet, rs11576175 (SNP N°2) was also associated with the risk of being a weight gainer (p(interaction) = 0.01, OR = 1.0526)--the risk of being a weight gainer increased with the percentage of proteins contained in the diet. CONCLUSION: CTSS variants seem to be nominally associated to obesity related traits and this association may be modified by dietary protein intake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteolytic enzymes comprise approximately 2 percent of the human genome [1]. Given their abundance, it is not surprising that proteases have diverse biological functions, ranging from the degradation of proteins in lysosomes to the control of physiological processes such as the coagulation cascade. However, a subset of serine proteases (possessing serine residues within their catalytic sites), which may be soluble in the extracellular fluid or tethered to the plasma membrane, are signaling molecules that can specifically regulate cells by cleaving protease-activated receptors (PARs), a family of four G-protein-coupled receptors (GPCRs). These serine proteases include members of the coagulation cascade (e.g., thrombin, factor VIIa, and factor Xa), proteases from inflammatory cells (e.g., mast cell tryptase, neutrophil cathepsin G), and proteases from epithelial tissues and neurons (e.g., trypsins). They are often generated or released during injury and inflammation, and they cleave PARs on multiple cell types, including platelets, endothelial and epithelial cells, myocytes, fibroblasts, and cells of the nervous system. Activated PARs regulate many essential physiological processes, such as hemostasis, inflammation, pain, and healing. These proteases and their receptors have been implicated in human disease and are potentially important targets for therapy. Proteases and PARs participate in regulating most organ systems and are the subject of several comprehensive reviews [2, 3]. Within the central and peripheral nervous systems, proteases and PARs can control neuronal and astrocyte survival, proliferation and morphology, release of neurotransmitters, and the function and activity of ion channels, topics that have also been comprehensively reviewed [4, 5]. This chapter specifically concerns the ability of PARs to regulate TRPV channels of sensory neurons and thereby affect neurogenic inflammation and pain transmission [6, 7].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymer-drug conjugates have demonstrated clinical potential in the context of anticancer therapy. However, such promising results have, to date, failed to translate into a marketed product. Polymer-drug conjugates rely on two factors for activity: (i) the presence of a defective vasculature, for passive accumulation of this technology into the tumour tissue (enhanced permeability and retention (EPR) effect) and (ii) the presence of a specific trigger at the tumour site, for selective drug release (e.g., the enzyme cathepsin B). Here, we retrospectively analyse literature data to investigate which tumour types have proved more responsive to polymer-drug conjugates and to determine correlations between the magnitude of the EPR effect and/or expression of cathepsin B. Lung, breast and ovarian cancers showed the highest response rate (30%, 47% and 41%, respectively for cathepsin-activated conjugates and 31%, 43%, 40%, across all conjugates). An analysis of literature data on cathepsin content in various tumour types showed that these tumour types had high cathepsin content (up to 3835 ng/mg for lung cancer), although marked heterogeneity was observed across different studies. In addition, these tumour types were also reported as having a high EPR effect. Our results suggest that a pre-screening of patient population could bring a more marked clinical benefit.