7 resultados para CAST MG-ZN

em CentAUR: Central Archive University of Reading - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pregnant rats were given control (46 mg iron/kg, 61 mg zinc/kg), low-Zn (6.9 mg Zn/kg) or low-Zn plus Fe (168 mg Fe/kg) diets from day 1 of pregnancy. The animals were allowed to give birth and parturition times recorded. Exactly 24 h after the end of parturition the pups were killed and analysed for water, fat, protein, Fe and Zn contents and the mothers' haemoglobin (Hb) and packed cell volume (PCV) were measured. There were no differences in weight gain or food intakes throughout pregnancy. Parturition times were similar (mean time 123 (SE 15) min) and there were no differences in the number of pups born. Protein, water and fat contents of the pups were similar but the low-Zn Fe-supplemented group had higher pup Fe than the low-Zn unsupplemented group, and the control group had higher pup Zn than both the low-Zn groups. The low-Zn groups had a greater incidence of haemorrhaged or deformed pups, or both, than the controls. Pregnant rats were given diets of adequate Zn level (40 mg/kg) but with varying Fe:Zn (0.8, 1.7, 2.9, 3.7). Zn retention from the diet was measured using 65Zn as an extrinsic label on days 3, 10 and 17 of pregnancy with a whole-body gamma-counter. A group of non-pregnant rats was also included as controls. The 65Zn content of mothers and pups was measured 24-48 h after birth and at 14, 21 and 24 d of age. In all groups Zn retention was highest from the first meal, fell in the second meal and then rose in the third meal of the pregnant but not the non-pregnant rats. There were no differences between the groups given diets of varying Fe:Zn level. Approximately 25% of the 65Zn was transferred from the mothers to the pups by the time they were 48 h old, and a further 17% during the first 14 d of lactation. The pup 65Zn content did not significantly increase after the first 20 d of lactation but the maternal 65Zn level continued to fall gradually.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study examines the food-chain transfer of Zn from two plant species, Urtica dioica (stinging nettle) and Acer pseudoplatanus (sycamore maple), into their corresponding aphid species, Microlophium carnosum and Drepanosiphum platanoidis. The plants were grown in a hydroponic system using solutions with increasing concentrations of Zn from 0.02 to 41.9 mg Zn/l. Above-ground tissue concentrations in U. dioica and M. carnosum increased with increasing Zn exposure (p < 0.001). Zn concentrations in A. pseudoplatanus also increased with solution concentration from the control to the 9.8 mg Zn/l solution, above which concentrations remained constant. Zn concentrations in both D. platanoidis and the phloem tissue of A. pseudoplatanus were not affected by the Zn concentration in the watering solution. It appears that A. pseudoplatanus was able to limit Zn transport in the phloem, resulting in constant Zn exposure to the aphids. Zn concentrations in D. platanoidis were around three times those in M. carnosum. Concentrations of Zn in two aphid species are dependant on species and exposure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two control and eight field-contaminated, metal-polluted soils were inoculated with Eisenia fetida (Savigny, 1826). Three, 7, 14, 21, 28 and 42 days after inoculation, earthworm survival, body weight, cocoon production and hatching rate were measured. Seventeen metals were analysed in E.fetida tissue, bulk soil and soil solution. Soil organic carbon content, texture, pH and cation exchange capacity were also measured. Cocoon production and hatching rate were more sensitive to adverse conditions than survival or weight change. Soil properties other than metal concentration impacted toxicity. The most toxic soils were organic-poor (1-10 g C kg(-1)), sandy soils (c. 74% sand), with intermediate metal concentrations (e.g. 7150-13, 100 mg Ph kg(-1), 2970-53,400 mg Zn kg(-1)). Significant relationships between soil properties and the life cycle parameters were determined. The best coefficients of correlation were generally found for texture, pH, Ag, Cd, Mg, Pb, Tl, and Zn both singularly and in multivariate regressions. Studies that use metal-amended artificial soils are not useful to predict toxicity of field multi-contaminated soils. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study examines the potential of Urtica dioica as an ecologically relevant species for use in ecotoxicological testing. It is prevalent in degraded ecosystems and is a food source for invertebrates. Urtica dioica grown in hydroponic solutions containing from less than 0.003 to 5.7 mg Cd/L or from 0.02 to 41.9 mg Zn/L accumulated metals resulting in leaf tissue concentrations in the range of 0.10 to 24.9 mg Cd/kg or 22.5 to 2,772.0 mg Zn/kg. No toxicological effects were apparent except at the highest concentrations tested, suggesting that this species may be an important pathway for transfer of metals to primary plant consumers. Helix aspersa and Lumbricus terrestris were fed the Cd- and Zn-rich leaves of U. dioica for six and four weeks, respectively. Cadmium and Zn body load increased with increasing metal concentration in the leaves (p < 0.001). Ratios of invertebrate metal concentration to leaf metal concentration were in the range of 1:0.03 to 1:1.4 for Cd and 1:0.2 to 1:2.8 for Zn in H. aspersa and 1:0.002 to 1:3.9 for Cd and 1:0.2 to 1:8.8 for Zn in L. terrestris. Helix aspersa Cd and Zn tissue concentrations (15.5 and 1,220.2 mg/kg, respectively) were approximately threefold those in L. terrestris when both species were fed nettle leaves with concentrations of approximately 23 mg Cd/ kg and 3,400 mg Zn/kg. Models demonstrate that L. terrestris Cd tissue concentrations (r(2) = 0.74, p < 0.001) and H. aspersa Zn tissue concentrations (r(2) = 0.69, p < 0.001) can be estimated from concentrations of Cd and Zn within the leaves of U. dioica and suggest that reasonably reproducible results can be obtained using these species for ecotoxicological testing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of this study was to test the impact of compost and Biochar, with or without earthworms, on the mobility and availability of metals, and on the growth of grass to re-vegetate contaminated soil from the Parys Mountain mining site, Anglesey. We also determined if the addition of earthworms compromises remediation efforts. In a laboratory experiment, contaminated soil (1343 mg Cu kg−1, 2511 mg Pb kg−1 and 262 mg Zn kg−1) was remediated with compost and/or Biochar. After 77 days Lumbricus terrestris L. earthworms were added to the treatment remediated with both compost and Biochar, and left for 28 days. L. terrestris was not able to survive in the Biochar, compost or unamended treatments. A germination and growth bioassay, using Agrostis capillaris (Common Bent) was then run on all treatments for 28 days. The combination of Biochar and compost decreased water soluble Cu (from 5.6 to 0.2 mg kg−1), Pb (0.17 to less than 0.007 mg kg−1) and Zn (3.3 to 0.05 mg kg−1) in the contaminated soil and increased the pH from 2.7 to 6.6. The addition of L. terrestris to this treatment had no effect on the concentration of the water soluble metals in the remediated soil. The compost was the only treatment that resulted in germination and growth of A. capillaris suitable for re-vegetation purposes. However, the combination of compost, Biochar (with or without L. terrestris) produced the lowest concentrations of Cu (8 mg kg−1) and Zn (36 mg kg−1) in the aboveground biomass, lower than the compost treatment (15 mgCu kg−1 and 126 mgZn kg−1). The addition of Biochar and compost both separately and as co-amendments was effective in reducing the mobility and availability of metals. The addition of L. terrestris did not re-mobilise previously sequestered metals.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Worldwide, many people are zinc (Zn)-deficient. Dietary Zn intake can be increased by producing crops with higher concentrations of Zn in their edible portions. This can be achieved by applying Zn-fertilisers to varieties with an increased ability to acquire Zn and to accumulate Zn in their edible portions. Potato (Solanum tuberosum L.) is an important food crop and is, therefore, a target for bio-fortification with Zn. Field trials incorporating a core collection of 23 potato genotypes, performed over 4 years (2006 – 2009), indicated significant genotypic effects on tuber Zn concentration and suggested that tuber Zn concentration was influenced by environmental effects, but also found that genotype environment (G E) interactions were not significant. Tuber Zn concentrations averaged 10.8 mg kg–1 dry matter (DM), and the ratio between the lowest and the highest varietal tuber Zn-concentration averaged 1.76. Tuber Zn concentrations could be increased by foliar Zn-fertilisation. Tuber yields of ‘Maris Piper’ were unaffected by foliar applications of < 1.08 g Zn plant–1. The relationship between tuber Zn concentration and foliar Zn application followed a saturation curve, reaching a maximum at approx. 30 mg Zn kg–1 DM at a foliar Zn application rate of 1.08 g plant–1. Despite a 40-fold increase in shoot Zn concentration compared to the unfertilised controls following foliar Zn fertilisation with 2.16 g Zn plant–1, only a doubling in tuber Zn concentration was observed. This suggests that the biofortification of tubers with Zn was restricted by the limited mobility of Zn in the phloem. A significant positive linear relationship between tuber Zn concentration and tuber N concentration supported the hypothesis of co-transport of Zn and N-compounds in the phloem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediments play a fundamental role in the behaviour of contaminants in aquatic systems. Various processes in sediments, eg adsorption-desorption, oxidation-reduction, ion exchange or biological activities, can cause accumulation or release of metals and anions from the bottom of reservoirs, and have been recently studied in Polish waters [1-3]. Sediment samples from layer A: (1 divided by 6 cm depth in direct contact with bottom water); layer B: (7 divided by 12 cm depth moderate contact); and layer C: (12+ cm depth, in theory an inactive layer) were collected in September 2007 from six sites representing different types of hydrological conditions along the Dobczyce Reservoir (Fig. l). Water depths at the sampling points varied from 3.5 to 21 m. We have focused on studying the distribution and accumulation of several heavy metals (Cr, Pb, Cd, Cu and Zn) in the sediments. The surface, bottom and pore water (extracted from sediments by centrifugation) samples were also collected. Possible relationships between the heavy-metal distribution in sediments and the sediment characteristics (mineralogy, organic matter) as well as the Fe, Mn and Ca content of sediments, have been studied. The 02 concentrations in water samples were also measured. The heavy metals in sediments ranged from 19.0 to 226.3 mg/kg of dry mass (ppm). The results show considerable variations in heavy-metal concentrations between the 6 stations, but not in the individual layers (A, B, C). These variations are related to the mineralogy and chemical composition of the sediments and their pore waters.