68 resultados para CALCIUM SALTS
em CentAUR: Central Archive University of Reading - UK
Resumo:
Insoluble calcium salts were added to milk to increase total calcium by 30 mM, without changing properties influencing heat stability, such as pH and ionic calcium. There were no major signs of instability associated with coagulation, sediment formation or fouling when subjected to ultra high temperature (UHT) and in-container sterilisation. The buffering capacity was also unaltered. On the other hand, addition of soluble calcium salts reduced pH, increased ionic calcium and caused coagulation to occur. Calcium chloride showed the largest destabilising effect, followed by calcium lactate and calcium gluconate. Milk became unstable to UHT processing at lower calcium additions compared to in-container sterilisation.
Resumo:
Inclusion of rapeseed feeds in dairy cow diets has the potential to reduce milk fat saturated fatty acid (SFA) and increase cis-monounsaturated fatty acid (cis-MUFA) content but effectiveness may depend on the form in which the rapeseed is presented. Four mid-lactation Holstein dairy cows were allocated to four maize silage-based dietary treatments according to a 4 x 4 Latin Square design, with 28-day experimental periods. Treatments consisted of a control diet (C containing 49 g/kg dry matter (DM) of calcium salts of palm oil distillate (CPO), or 49 g/kg DM of oil supplied as whole rapeseeds (WR), rapeseeds milled with wheat (MR) or rapeseed oil (RO). Replacing CPO with rapeseed feeds had no effect (P > 0.05) on milk fat and protein content, while milk yields were higher (P < 0.05) for RO and MR compared with WR (37.1, 38.1 and 34.3 kg/day, respectively). Substituting CPO with RO or MR reduced (P < 0.05) milk fat total SFA content (69.6, 55.6, 71.7 and 61.5 g/100g fatty acids for C, RO, WR and MR, respectively) and enhanced (P < 0.05) milk cis-9 18:1 MUFA concentrations (corresponding values 18.6, 24.3, 17.0 and 23.0 g/100g fatty acids) compared with C and WR. Treatments RO and MR also increased (P < 0.05) milk trans-MUFA content (4.4, 6.8, 10.5 g/100g fatty acids, C MR and RO, respectively). A lack of significant changes in milk fat composition when replacing CPO with WR suggests limited bioavailability of fatty acids in intact rapeseeds. In conclusion, replacing a commercial palm oil-based fat supplement in the diet with milled rapeseeds or rapeseed oil represented an effective strategy to alter milk fatty acid composition with the potential to improve human health. Inclusion of processed rapeseeds offered a good compromise for reducing milk SFA and increasing cis-MUFA, whilst minimising milk trans-MUFA and negative effects on animal performance.
Resumo:
Clinical and biomedical studies have provided evidence for the critical role of n-3 fatty acids on the reduction of chronic disease risk in humans, including cardiovascular disease. In the current experiment, the potential to enhance milk n-3 content in two breeds with inherent genetic differences in mammary lipogenesis and de novo fatty acid synthesis was examined using extruded linseeds. Six lactating cows (three Holstein and three Jersey) were used in a two-treatment switchback design with 3 × 21-day experimental periods to evaluate the effect of iso-energetic replacement of calcium salts of palm oil distillate (CPO) in the diet (34 g/kg dry matter (DM)) with 100 g/kg DM extruded linseeds (LIN). For both breeds, replacing CPO with LIN had no effect (P > 0.05) on DM intake or milk yield, but reduced (P < 0.05) milk fat and protein yield (on average, from 760 to 706 and 573 to 552 g/day, respectively). Relative to CPO, the LIN treatment reduced (P < 0.01) total saturated fatty acid content and enhanced (P < 0.001) 18:3n-3 in milk, whereas breed by diet interactions were significant for milk fat 16:0, total trans fatty acid and conjugated linoleic acid concentrations. Increases in 18:3n-3 intake derived from LIN in the diet were transferred into milk with a mean marginal transfer efficiency of 1.8%. Proportionate changes in milk fatty acid composition were greater in the Jersey, highlighting the importance of diet–genotype interactions on mammary lipogenesis. More extensive studies are required to determine the role of genotype on milk fat composition responses to oilseeds in the diet.
Resumo:
In most Western countries, saturated fatty acid (SFA) intake exceeds recommended levels, which is considered a risk factor for cardiovascular disease (CVD). As milk and dairy products are major contributors to SFA intake in many countries, recent research has focused on sustainable methods of producing milk with a lower saturated fat concentration by altering dairy cow diets. Human intervention studies have shown that CVD risk can be reduced by consuming dairy products with reduced SFA and increased cis-monounsaturated fatty acid (MUFA) concentrations. This milk fatty acid profile can be achieved by supplementing dairy cow diets with cis-MUFA-rich unsaturated oils. However, rumen exposure of unsaturated oils also leads to enhanced milk trans fatty acid (TFA) concentrations. Because of concerns about the effects of TFA consumption on CVD, feeding strategies that increase MUFA concentrations in milk without concomitant increases in TFA concentration are preferred by milk processors. In an attempt to limit TFA production and increase the replacement of SFA by cis-MUFA, a preparation of rumen-protected unsaturated oils was developed using saponification with calcium salts. Four multiparous Holstein-Friesian cows in mid-late lactation were used in a 4 × 4 Latin square design with 21-d periods to investigate the effect of incremental dietary inclusion of a calcium salt of cis-MUFA product (Ca-MUFA; 20, 40, and 60 g/kg of dry matter of a maize silage-based diet), on milk production, composition, and fatty acid concentration. Increasing Ca-MUFA inclusion reduced dry matter intake linearly, but no change was observed in estimated ME intake. No change in milk yield was noted, but milk fat and protein concentrations were linearly reduced. Supplementation with Ca-MUFA resulted in a linear reduction in total SFA (from 71 to 52 g/100 g of fatty acids for control and 60 g/kg of dry matter diets, respectively). In addition, concentrations of both cis- and trans-MUFA were increased with Ca-MUFA inclusion, and increases in other biohydrogenation intermediates in milk fat were also observed. The Ca-MUFA supplement was very effective at reducing milk SFA concentration and increasing cis-MUFA concentrations without incurring any negative effects on milk and milk component yields. However, reduced milk fat and protein concentrations, together with increases in milk TFA concentrations, suggest partial dissociation of the calcium salts in the rumen
Resumo:
Increasing levels of CO2 and H+ proton in the rhizosphere from some legumes may play an important role in calcite dissolution of calcareous salt affected soils. Soils planted with white and brown varieties of cowpea (Vigna unguiculata L.) and hyacinth bean (Dolichos lablab L.) relying on either fertilizer N (KNO3) or N-fixation were compared against soils to which gypsum was applied and a control without plants and gypsum application to study the possibility of Ca2+ release from calcite and Na+ leaching. As compared to plants relying on inorganic N, leachates from all pore volumes (0·5, 1·0, 1·5, 2·0 pore volume) in lysimeters planted with N-fixing hyacinth bean contained significantly higher concentrations of HCO with lower concentrations from lysimeters planted with white cowpea relying on N-fixation. However, the lowest concentrations of HCO were recorded in the gypsum and control treatments. In initial leaching, lysimeters planted with N-fixing plants maintained similar leachate Ca2+ and Na+ concentrations compared to gypsum amended soils. However, gypsum amended soils were found to have a prolonged positive effect on Na+ removal. It might be concluded that some legumes that are known to fix N in calcareous salt affected soils may be an alternative ameliorant to the extremely expensive gypsum through calcite solubilization and a consequent release of Ca2+.
Resumo:
The AMPA receptor (AMPAR) subunit GluR2, which regulates excitotoxicity and the inflammatory cytokine tumour necrosis factor alpha (TNF alpha) have both been implicated in motor neurone vulnerability in Amyotrophic Lateral Sclerosis/Motor Neurone Disease. TNF alpha has been reported to increase cell surface expression of AMPAR subunits to increase synaptic strength and enhance excitotoxicity, but whether this mechanism occurs in motor neurones is unknown. We used primary cultures of mouse motor neurones and cortical neurones to examine the interaction between TNF alpha receptor activation, GluR2 availability, AMPAR-mediated calcium entry and susceptibility to excitotoxicity. Short exposure to a physiologically relevant concentration of TNFalpha (10 ng/ml, 15 min) caused a marked redistribution of both GluR1 and GluR2 to the cell surface as determined by cell surface biotinylation and immunofluorescence. Using Fura-2 AM microfluorimetry we showed that exposure to TNFalpha caused a rapid reduction in the peak amplitude of AMPA-mediated calcium entry in a PI3-kinase and p38 kinase-dependent manner, consistent with increased insertion of GluR2-containing AMPAR into the plasma membrane. This resulted in a protection of motor neurones against kainate-induced cell death. Our data therefore, suggests that TNF alpha acts primarily as a physiological regulator of synaptic activity in motor neurones rather than a pathological drive in ALS
Resumo:
Procedures for routine analysis of soil phosphorus (P) have been used for assessment of P status, distribution and P losses from cultivated mineral soils. No similar studies have been carried out on wetland peat soils. The objective was to compare extraction efficiency of ammonium lactate (PAL), sodium bicarbonate (P-Olsen), and double calcium lactate (P-DCaL) and P distribution in the soil profile of wetland peat soils. For this purpose, 34 samples of the 0-30, 30-60 and 60-90 cm layers were collected from peat soils in Germany, Israel, Poland, Slovenia, Sweden and the United Kingdom and analysed for P. Mean soil pH (CaCl2, 0.01 M) was 5.84, 5.51 and 5.47 in the 0-30, 30-60 and 60-90 cm layers, respectively. The P-DCaL was consistently about half the magnitude of either P-AL or P-Olsen. The efficiency of P extraction increased in the order P-DCaL < P-AL &LE; P-Olsen, with corresponding means (mg kg(-1)) for all soils (34 samples) of 15.32, 33.49 and 34.27 in 0-30 cm; 8.87, 17.30 and 21.46 in 30-60 cm; and 5.69, 14.00 and 21.40 in 60-90 cm. The means decreased with depth. When examining soils for each country separately, P-Olsen was relatively evenly distributed in the German, UK and Slovenian soils. P-Olsen was linearly correlated (r = 0.594, P = 0.0002) with pH, whereas the three P tests (except P-Olsen vs P-DCaL) significantly correlated with each other (P = 0.017850.0001). The strongest correlation (r = 0.617, P = 0.0001) was recorded for P-AL vs P-DCaL) and the two methods were inter-convertible using a regression equation: P-AL = -22.593 + 5.353 pH + 1.423 P-DCaL, R-2 = 0.550.
Resumo:
Tomato plants ( Lycopersicon esculentum Mill. var. DRK) were grown hydroponically to determine the effect of an uneven distribution of nutrients in the root zone on blossomend rot (BER) and Ca and K concentrations in the fruits. The plants were grown in rockwool with their root system divided into two portions. Each portion was irrigated with nutrient solutions with either the same or the different electrical conductivity (EC) in the range 0 to 6 dS m(-1). Solutions with high EC supplied to both sides of the root system significantly increased the incidence of BER. However, when only water or a solution of low EC was supplied to one portion, BER was reduced by 80%. Fruit yields were significantly higher ( P < 0.01) for plants that received solutions of the uneven EC treatments (6/0 or 4.5/0 EC treatment). Plants supplied with solutions of uneven EC generally had higher leaf and fruit concentrations of Ca but lower concentrations of K than those supplied with solutions of high EC. There was no difference in Ca concentration at the distal end of young fruits of the uneven EC treatment but it was reduced in the high EC treatments. The concentration of K in the mature fruits of the uneven EC treatments was lower than that of the high EC treatments and higher or similar that of the 3/3 or 2.5/2.5 EC treatments ( controls). A clear relationship was found between the incidence of BER and the exudation rate. High rate of xylem exudation was observed in the uneven EC treatments. Reduction of BER in the uneven EC treatments is most likely to be the effect of high exudation rate on Ca status in the young fruits. It was concluded that high EC of solution had positive effects on Ca concentration and incidence of BER provided that nutrient solution with low EC or water is supplied to the one portion of the root system.
Resumo:
The total calcium level of raw skimmed milk was reduced by 10, 19, 29, 40 and 51% using Duolite® ion-exchange resin. The products were examined for concentrations of ionic calcium, sodium and potassium and the pH, ethanol stability, micelle diameter and ζ-potential were also measured. Ionic calcium decreased with removal of calcium and pH increased. Calcium removal resulted in an increase in the ethanol stability from 88% to above 100%. Casein micelle diameter increased as calcium was removed. The ζ-potential of the skimmed bulk milk was -24.4 mV, gradually becoming more negative with calcium removal to -30.6 mV after 51% calcium removal. The milk became more translucent as calcium was removed. To investigate the reversibility of this process, calcium chloride was added back to the depleted samples to restore their original total calcium content. At 51% removal, restoration of the total calcium level resulted in formation of clots. At levels of 10 and 19% calcium removal, the ethanol stability remained above 100%, but at higher levels of calcium removal the alcohol stability was adversely affected when the calcium was added back. Adding back calcium resulted in partial restoration of the original casein micelle diameter.
Resumo:
Dialysis and ultrafiltration were investigated as methods for measuring pH and ionic calcium and partitioning of divalent cations of milk at high temperatures. It was found that ionic calcium, pH, and total soluble divalent cations decreased as temperature increased between 20 and 80°C in both dialysates and ultrafiltration permeates. Between 90 and 110°C, ionic calcium and pH in dialysates continued to decrease as temperature increased, and the relationship between ionic calcium and temperature was linear. The permeabilities of hydrogen and calcium ions through the dialysis tubing were not changed after the tubing was sterilized for 1h at 120°C. There were no significant differences in pH and ionic calcium between dialysates from raw milk and those from a range of heat-treated milks. The effects of calcium chloride addition on pH and ionic calcium were measured in milk at 20°C and in dialysates collected at 110°C. Heat coagulation at 110°C occurred with addition of calcium chloride at 5.4mM, where pH and ionic calcium of the dialysate were 6.00 and 0.43mM, respectively. Corresponding values at 20°C were pH 6.66 and 2.10mM.
Resumo:
Different stabilising salts and calcium chloride were added to raw milk to evaluate changes in pH, ionic calcium, ethanol stability, casein micelle size and zeta potential. These milk samples were then sterilised at 121 °C for 15 min and stored for 6 months to determine how these properties changed. Addition of tri-sodium citrate (TSC) and di-sodium hydrogen phosphate (DSHP) to milk reduced ionic calcium, increased pH and increased ethanol stability in a concentration-dependent fashion. There was relatively little change in casein micelle size and a slight decrease in zeta potential. Sodium hexametaphosphate (SHMP) also reduced ionic calcium considerably, but its effect on pH was less noticeable. In contrast, sodium dihydrogen phosphate (SDHP) reduced pH but had little effect on ionic calcium. In-container sterilisation of these samples reduced pH, increased ethanol stability and increased casein micelle size, but had variable effects on ionic calcium; for DSHP and SDHP, ionic calcium decreased after sterilisation but, for SHMP, it remained little changed or increased. Milk containing 3.2 mM SHMP and more than 4.5 mM CaCl2 coagulated upon sterilisation. All other samples were stable but there were differences in browning, which increased in intensity as milk pH increased. Heat-induced sediment was not directly related to ionic calcium concentration, so reducing ionic calcium was not the only consideration in terms of improving heat stability. After 6 months of storage, the most acceptable product, in appearance, was that containing SDHP, as this minimised browning during sterilisation and further development of browning during storage.