3 resultados para C14:0

em CentAUR: Central Archive University of Reading - UK


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Various studies have indicated a relationship between enteric methane (CH4) production and milk fatty acid (FA) profiles of dairy cattle. However, the number of studies investigating such a relationship is limited and the direct relationships reported are mainly obtained by variation in CH4 production and milk FA concentration induced by dietary lipid supplements. The aim of this study was to perform a meta-analysis to quantify relationships between CH4 yield (per unit of feed and unit of milk) and milk FA profile in dairy cattle and to develop equations to predict CH4 yield based on milk FA profile of cows fed a wide variety of diets. Data from 8 experiments encompassing 30 different dietary treatments and 146 observations were included. Yield of CH4 measured in these experiments was 21.5 ± 2.46 g/kg of dry matter intake (DMI) and 13.9 ± 2.30 g/ kg of fat- and protein-corrected milk (FPCM). Correlation coefficients were chosen as effect size of the relationship between CH4 yield and individual milk FA concentration (g/100 g of FA). Average true correlation coefficients were estimated by a random-effects model. Milk FA concentrations of C6:0, C8:0, C10:0, C16:0, and C16:0-iso were significantly or tended to be positively related to CH4 yield per unit of feed. Concentrations of trans-6+7+8+9 C18:1, trans-10+11 C18:1, cis- 11 C18:1, cis-12 C18:1, cis-13 C18:1, trans-16+cis-14 C18:1, and cis-9,12 C18:2 in milk fat were significantly or tended to be negatively related to CH4 yield per unit of feed. Milk FA concentrations of C10:0, C12:0, C14:0-iso, C14:0, cis-9 C14:1, C15:0, and C16:0 were significantly or tended to be positively related to CH4 yield per unit of milk. Concentrations of C4:0, C18:0, trans-10+11 C18:1, cis-9 C18:1, cis-11 C18:1, and cis- 9,12 C18:2 in milk fat were significantly or tended to be negatively related to CH4 yield per unit of milk. Mixed model multiple regression and a stepwise selection procedure of milk FA based on the Bayesian information criterion to predict CH4 yield with milk FA as input (g/100 g of FA) resulted in the following prediction equations: CH4 (g/kg of DMI) = 23.39 + 9.74 × C16:0- iso – 1.06 × trans-10+11 C18:1 – 1.75 × cis-9,12 C18:2 (R2 = 0.54), and CH4 (g/kg of FPCM) = 21.13 – 1.38 × C4:0 + 8.53 × C16:0-iso – 0.22 × cis-9 C18:1 – 0.59 × trans-10+11 C18:1 (R2 = 0.47). This indicated that milk FA profile has a moderate potential for predicting CH4 yield per unit of feed and a slightly lower potential for predicting CH4 yield per unit of milk. Key words: methane , milk fatty acid profile , metaanalysis , dairy cattle

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigates the quality of retail milk labelled as Jersey & Guernsey (JG) when compared with milk without breed specifications (NS) and repeatability of differences over seasons and years. 16 different brands of milk (4 Jersey & Guernsey, 12 non specified breed) were sampled over 2 years on 4 occasions. JG milk was associated with both favourable traits for human health, such as the higher total protein, total casein, α-casein, β-casein, κ-casein and α-tocopherol contents, and unfavourable traits, such as the higher concentrations of saturated fat, C12:0, C14:0 and lower concentrations of monounsaturated fatty acids. In summer, JG milk had a higher omega-3:omega-6 ratio than had NS milk. Also, the relative increase in omega-3 fatty acids and α-tocopherol, from winter to summer, was greater in JG milk. The latter characteristic could be of use in breeding schemes and farming systems producing niche dairy products. Seasonality had a more marked impact on the fatty acid composition of JG milk than had NS milk, while the opposite was found for protein composition. Potential implication for the findings in human health, producers, industry and consumers are considered.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study of UK retail milk identified highly significant variations in fat composition. The survey, conducted over 2 yr replicating summer and winter, sampled 22 brands, 10 of which indicated organic production systems. Results corroborate earlier farm-based findings considering fat composition of milk produced under conventional and organic management. Organic milk had higher concentrations of beneficial fatty acids (FA) than conventional milk, including total polyunsaturated fatty acids (PUFA; 39.4 vs. 31.8 g/kg of total FA), conjugated linoleic acid cis-9,trans-11 (CLA9; 7.4 v 5.6 g/kg of FA), and α-linolenic acid (α-LN; 6.9 vs. 4.4 g/kg of FA). As expected, purchase season had a strong effect on fat composition: compared with milk purchased in winter, summer milk had a lower concentration of saturated fatty acids (682 vs. 725 g/kg of FA) and higher concentrations of PUFA (37.6 vs. 32.8 g/kg of FA), CLA9 (8.1 vs. 4.7 g/kg of FA), and α-LN (6.5 vs. 4.6 g/kg of FA). Differences identified between sampling years were more surprising: compared with that in yr 2, milk purchased in year 1 had higher concentrations of PUFA (37.5 vs. 32.9 g/kg of FA), α-LN (6.0 vs. 5.1 g/kg of FA), and linoleic acid (19.9 vs. 17.5 g/kg of FA) and lower concentrations of C16:0 and C14:0 (332 vs. 357 and 110 vs. 118 g/kg of FA, respectively). Strong interactions were identified between management and season as well as between season and year of the study. As in the earlier farm studies, differences in fat composition between systems were greater for summer compared with winter milk. Large between-year differences may be due to changes in weather influencing milk composition through forage availability, quality, and intake. If climate change predictions materialize, both forage and dairy management may have to adapt to maintain current milk quality. Considerable variation existed in milk fat composition between brands.