146 resultados para C-band meteorological radar
em CentAUR: Central Archive University of Reading - UK
Resumo:
The differential phase (ΦDP) measured by polarimetric radars is recognized to be a very good indicator of the path integrated by rain. Moreover, if a linear relationship is assumed between the specific differential phase (KDP) and the specific attenuation (AH) and specific differential attenuation (ADP), then attenuation can easily be corrected. The coefficients of proportionality, γH and γDP, are, however, known to be dependent in rain upon drop temperature, drop shapes, drop size distribution, and the presence of large drops causing Mie scattering. In this paper, the authors extensively apply a physically based method, often referred to as the “Smyth and Illingworth constraint,” which uses the constraint that the value of the differential reflectivity ZDR on the far side of the storm should be low to retrieve the γDP coefficient. More than 30 convective episodes observed by the French operational C-band polarimetric Trappes radar during two summers (2005 and 2006) are used to document the variability of γDP with respect to the intrinsic three-dimensional characteristics of the attenuating cells. The Smyth and Illingworth constraint could be applied to only 20% of all attenuated rays of the 2-yr dataset so it cannot be considered the unique solution for attenuation correction in an operational setting but is useful for characterizing the properties of the strongly attenuating cells. The range of variation of γDP is shown to be extremely large, with minimal, maximal, and mean values being, respectively, equal to 0.01, 0.11, and 0.025 dB °−1. Coefficient γDP appears to be almost linearly correlated with the horizontal reflectivity (ZH), differential reflectivity (ZDR), and specific differential phase (KDP) and correlation coefficient (ρHV) of the attenuating cells. The temperature effect is negligible with respect to that of the microphysical properties of the attenuating cells. Unusually large values of γDP, above 0.06 dB °−1, often referred to as “hot spots,” are reported for 15%—a nonnegligible figure—of the rays presenting a significant total differential phase shift (ΔϕDP > 30°). The corresponding strongly attenuating cells are shown to have extremely high ZDR (above 4 dB) and ZH (above 55 dBZ), very low ρHV (below 0.94), and high KDP (above 4° km−1). Analysis of 4 yr of observed raindrop spectra does not reproduce such low values of ρHV, suggesting that (wet) ice is likely to be present in the precipitation medium and responsible for the attenuation and high phase shifts. Furthermore, if melting ice is responsible for the high phase shifts, this suggests that KDP may not be uniquely related to rainfall rate but can result from the presence of wet ice. This hypothesis is supported by the analysis of the vertical profiles of horizontal reflectivity and the values of conventional probability of hail indexes.
Resumo:
Refractivity changes (ΔN) derived from radar ground clutter returns serve as a proxy for near-surface humidity changes (1 N unit ≡ 1% relative humidity at 20 °C). Previous studies have indicated that better humidity observations should improve forecasts of convection initiation. A preliminary assessment of the potential of refractivity retrievals from an operational magnetron-based C-band radar is presented. The increased phase noise at shorter wavelengths, exacerbated by the unknown position of the target within the 300 m gate, make it difficult to obtain absolute refractivity values, so we consider the information in 1 h changes. These have been derived to a range of 30 km with a spatial resolution of ∼4 km; the consistency of the individual estimates (within each 4 km × 4 km area) indicates that ΔN errors are about 1 N unit, in agreement with in situ observations. Measurements from an instrumented tower on summer days show that the 1 h refractivity changes up to a height of 100 m remain well correlated with near-surface values. The analysis of refractivity as represented in the operational Met Office Unified Model at 1.5, 4 and 12 km grid lengths demonstrates that, as model resolution increases, the spatial scales of the refractivity structures improve. It is shown that the magnitude of refractivity changes is progressively underestimated at larger grid lengths during summer. However, the daily time series of 1 h refractivity changes reveal that, whereas the radar-derived values are very well correlated with the in situ observations, the high-resolution model runs have little skill in getting the right values of ΔN in the right place at the right time. This suggests that the assimilation of these radar refractivity observations could benefit forecasts of the initiation of convection.
Resumo:
Two so-called “integrated” polarimetric rate estimation techniques, ZPHI (Testud et al., 2000) and ZZDR (Illingworth and Thompson, 2005), are evaluated using 12 episodes of the year 2005 observed by the French C-band operational Trappes radar, located near Paris. The term “integrated” means that the concentration parameter of the drop size distribution is assumed to be constant over some area and the algorithms retrieve it using the polarimetric variables in that area. The evaluation is carried out in ideal conditions (no partial beam blocking, no ground-clutter contamination, no bright band contamination, a posteriori calibration of the radar variables ZH and ZDR) using hourly rain gauges located at distances less than 60 km from the radar. Also included in the comparison, for the sake of benchmarking, is a conventional Z = 282R1.66 estimator, with and without attenuation correction and with and without adjustment by rain gauges as currently done operationally at Météo France. Under those ideal conditions, the two polarimetric algorithms, which rely solely on radar data, appear to perform as well if not better, pending on the measurements conditions (attenuation, rain rates, …), than the conventional algorithms, even when the latter take into account rain gauges through the adjustment scheme. ZZDR with attenuation correction is the best estimator for hourly rain gauge accumulations lower than 5 mm h−1 and ZPHI is the best one above that threshold. A perturbation analysis has been conducted to assess the sensitivity of the various estimators with respect to biases on ZH and ZDR, taking into account the typical accuracy and stability that can be reasonably achieved with modern operational radars these days (1 dB on ZH and 0.2 dB on ZDR). A +1 dB positive bias on ZH (radar too hot) results in a +14% overestimation of the rain rate with the conventional estimator used in this study (Z = 282R^1.66), a -19% underestimation with ZPHI and a +23% overestimation with ZZDR. Additionally, a +0.2 dB positive bias on ZDR results in a typical rain rate under- estimation of 15% by ZZDR.
Resumo:
The use of pulse compression techniques to improve the sensitivity of meteorological radars has become increasingly common in recent years. An unavoidable side-effect of such techniques is the formation of ‘range sidelobes’ which lead to spreading of information across several range gates. These artefacts are particularly troublesome in regions where there is a sharp gradient in the power backscattered to the antenna as a function of range. In this article we present a simple method for identifying and correcting range sidelobe artefacts. We make use of the fact that meteorological targets produce an echo which fluctuates at random, and that this echo, like a fingerprint, is unique to each range gate. By cross-correlating the echo time series from pairs of gates therefore we can identify whether information from one gate has spread into another, and hence flag regions of contamination. In addition we show that the correlation coefficients contain quantitative information about the fraction of power leaked from one range gate to another, and we propose a simple algorithm to correct the corrupted reflectivity profile.
Resumo:
Radar refractivity retrievals can capture near-surface humidity changes, but noisy phase changes of the ground clutter returns limit the accuracy for both klystron- and magnetron-based systems. Observations with a C-band (5.6 cm) magnetron weather radar indicate that the correction for phase changes introduced by local oscillator frequency changes leads to refractivity errors no larger than 0.25 N units: equivalent to a relative humidity change of only 0.25% at 20°C. Requested stable local oscillator (STALO) frequency changes were accurate to 0.002 ppm based on laboratory measurements. More serious are the random phase change errors introduced when targets are not at the range-gate center and there are changes in the transmitter frequency (ΔfTx) or the refractivity (ΔN). Observations at C band with a 2-μs pulse show an additional 66° of phase change noise for a ΔfTx of 190 kHz (34 ppm); this allows the effect due to ΔN to be predicted. Even at S band with klystron transmitters, significant phase change noise should occur when a large ΔN develops relative to the reference period [e.g., ~55° when ΔN = 60 for the Next Generation Weather Radar (NEXRAD) radars]. At shorter wavelengths (e.g., C and X band) and with magnetron transmitters in particular, refractivity retrievals relative to an earlier reference period are even more difficult, and operational retrievals may be restricted to changes over shorter (e.g., hourly) periods of time. Target location errors can be reduced by using a shorter pulse or identified by a new technique making alternate measurements at two closely spaced frequencies, which could even be achieved with a dual–pulse repetition frequency (PRF) operation of a magnetron transmitter.
Resumo:
Synthetic aperture radar (SAR) data have proved useful in remote sensing studies of deserts, enabling different surfaces to be discriminated by differences in roughness properties. Roughness is characterized in SAR backscatter models using the standard deviation of surface heights (sigma), correlation length (L) and autocorrelation function (rho(xi)). Previous research has suggested that these parameters are of limited use for characterizing surface roughness, and are often unreliable due to the collection of too few roughness profiles, or under-sampling in terms of resolution or profile length (L-p). This paper reports on work aimed at establishing the effects of L-p and sampling resolution on SAR backscatter estimations and site discrimination. Results indicate significant relationships between the average roughness parameters and L-p, but large variability in roughness parameters prevents any clear understanding of these relationships. Integral equation model simulations demonstrate limited change with L-p and under-estimate backscatter relative to SAR observations. However, modelled and observed backscatter conform in pattern and magnitude for C-band systems but not for L-band data. Variation in surface roughness alone does not explain variability in site discrimination. Other factors (possibly sub-surface scattering) appear to play a significant role in controlling backscatter characteristics at lower frequencies.
Resumo:
Radar refractivity retrievals have the potential to accurately capture near-surface humidity fields from the phase change of ground clutter returns. In practice, phase changes are very noisy and the required smoothing will diminish large radial phase change gradients, leading to severe underestimates of large refractivity changes (ΔN). To mitigate this, the mean refractivity change over the field (ΔNfield) must be subtracted prior to smoothing. However, both observations and simulations indicate that highly correlated returns (e.g., when single targets straddle neighboring gates) result in underestimates of ΔNfield when pulse-pair processing is used. This may contribute to reported differences of up to 30 N units between surface observations and retrievals. This effect can be avoided if ΔNfield is estimated using a linear least squares fit to azimuthally averaged phase changes. Nevertheless, subsequent smoothing of the phase changes will still tend to diminish the all-important spatial perturbations in retrieved refractivity relative to ΔNfield; an iterative estimation approach may be required. The uncertainty in the target location within the range gate leads to additional phase noise proportional to ΔN, pulse length, and radar frequency. The use of short pulse lengths is recommended, not only to reduce this noise but to increase both the maximum detectable refractivity change and the number of suitable targets. Retrievals of refractivity fields must allow for large ΔN relative to an earlier reference field. This should be achievable for short pulses at S band, but phase noise due to target motion may prevent this at C band, while at X band even the retrieval of ΔN over shorter periods may at times be impossible.
Resumo:
The Finnish Meteorological Institute, in collaboration with the University of Helsinki, has established a new ground-based remote-sensing network in Finland. The network consists of five topographically, ecologically and climatically different sites distributed from southern to northern Finland. The main goal of the network is to monitor air pollution and boundary layer properties in near real time, with a Doppler lidar and ceilometer at each site. In addition to these operational tasks, two sites are members of the Aerosols, Clouds and Trace gases Research InfraStructure Network (ACTRIS); a Ka band cloud radar at Sodankylä will provide cloud retrievals within CloudNet, and a multi-wavelength Raman lidar, PollyXT (POrtabLe Lidar sYstem eXTended), in Kuopio provides optical and microphysical aerosol properties through EARLINET (the European Aerosol Research Lidar Network). Three C-band weather radars are located in the Helsinki metropolitan area and are deployed for operational and research applications. We performed two inter-comparison campaigns to investigate the Doppler lidar performance, compare the backscatter signal and wind profiles, and to optimize the lidar sensitivity through adjusting the telescope focus length and data-integration time to ensure sufficient signal-to-noise ratio (SNR) in low-aerosol-content environments. In terms of statistical characterization, the wind-profile comparison showed good agreement between different lidars. Initially, there was a discrepancy in the SNR and attenuated backscatter coefficient profiles which arose from an incorrectly reported telescope focus setting from one instrument, together with the need to calibrate. After diagnosing the true telescope focus length, calculating a new attenuated backscatter coefficient profile with the new telescope function and taking into account calibration, the resulting attenuated backscatter profiles all showed good agreement with each other. It was thought that harsh Finnish winters could pose problems, but, due to the built-in heating systems, low ambient temperatures had no, or only a minor, impact on the lidar operation – including scanning-head motion. However, accumulation of snow and ice on the lens has been observed, which can lead to the formation of a water/ice layer thus attenuating the signal inconsistently. Thus, care must be taken to ensure continuous snow removal.
Resumo:
This study presents an evaluation of the size and strength of convective updraughts in high-resolution simulations by the UK Met Office Unified Model (UM). Updraught velocities have been estimated from range–height indicator (RHI) Doppler velocity measurements using the Chilbolton advanced meteorological radar, as part of the Dynamical and Microphysical Evolution of Convective Storms (DYMECS) project. Based on mass continuity and the vertical integration of the observed radial convergence, vertical velocities tend to be underestimated for convective clouds due to the undetected cross-radial convergence. Velocity fields from the UM at a resolution corresponding to the radar observations are used to scale such estimates to mitigate the inherent biases. The analysis of more than 100 observed and simulated storms indicates that the horizontal scale of updraughts in simulations tend to decrease with grid length; the 200 m grid length agreed most closely with the observations. Typical updraught mass fluxes in the 500 m grid length simulations were up to an order of magnitude greater than observed, and greater still in the 1.5 km grid length simulations. The effect of increasing the mixing length in the sub-grid turbulence scheme depends on the grid length. For the 1.5 km simulations, updraughts were weakened though their horizontal scale remained largely unchanged. Progressively more so for the sub-kilometre grid lengths, updraughts were broadened and intensified; horizontal scale was now determined by the mixing length rather than the grid length. In general, simulated updraughts were found to weaken too quickly with height. The findings were supported by the analysis of the widths of reflectivity patterns in both the simulations and observations.
Resumo:
A recent field campaign in southwest England used numerical modeling integrated with aircraft and radar observations to investigate the dynamic and microphysical interactions that can result in heavy convective precipitation. The COnvective Precipitation Experiment (COPE) was a joint UK-US field campaign held during the summer of 2013 in the southwest peninsula of England, designed to study convective clouds that produce heavy rain leading to flash floods. The clouds form along convergence lines that develop regularly due to the topography. Major flash floods have occurred in the past, most famously at Boscastle in 2004. It has been suggested that much of the rain was produced by warm rain processes, similar to some flash floods that have occurred in the US. The overarching goal of COPE is to improve quantitative convective precipitation forecasting by understanding the interactions of the cloud microphysics and dynamics and thereby to improve NWP model skill for forecasts of flash floods. Two research aircraft, the University of Wyoming King Air and the UK BAe 146, obtained detailed in situ and remote sensing measurements in, around, and below storms on several days. A new fast-scanning X-band dual-polarization Doppler radar made 360-deg volume scans over 10 elevation angles approximately every 5 minutes, and was augmented by two UK Met Office C-band radars and the Chilbolton S-band radar. Detailed aerosol measurements were made on the aircraft and on the ground. This paper: (i) provides an overview of the COPE field campaign and the resulting dataset; (ii) presents examples of heavy convective rainfall in clouds containing ice and also in relatively shallow clouds through the warm rain process alone; and (iii) explains how COPE data will be used to improve high-resolution NWP models for operational use.
Resumo:
Meteorological (met) station data is used as the basis for a number of influential studies into the impacts of the variability of renewable resources. Real turbine output data is not often easy to acquire, whereas meteorological wind data, supplied at a standardised height of 10 m, is widely available. This data can be extrapolated to a standard turbine height using the wind profile power law and used to simulate the hypothetical power output of a turbine. Utilising a number of met sites in such a manner can develop a model of future wind generation output. However, the accuracy of this extrapolation is strongly dependent on the choice of the wind shear exponent alpha. This paper investigates the accuracy of the simulated generation output compared to reality using a wind farm in North Rhins, Scotland and a nearby met station in West Freugh. The results show that while a single annual average value for alpha may be selected to accurately represent the long term energy generation from a simulated wind farm, there are significant differences between simulation and reality on an hourly power generation basis, with implications for understanding the impact of variability of renewables on short timescales, particularly system balancing and the way that conventional generation may be asked to respond to a high level of variable renewable generation on the grid in the future.
Resumo:
A set of high-resolution radar observations of convective storms has been collected to evaluate such storms in the UK Met Office Unified Model during the DYMECS project (Dynamical and Microphysical Evolution of Convective Storms). The 3-GHz Chilbolton Advanced Meteorological Radar was set up with a scan-scheduling algorithm to automatically track convective storms identified in real-time from the operational rainfall radar network. More than 1,000 storm observations gathered over fifteen days in 2011 and 2012 are used to evaluate the model under various synoptic conditions supporting convection. In terms of the detailed three-dimensional morphology, storms in the 1500-m grid-length simulations are shown to produce horizontal structures a factor 1.5–2 wider compared to radar observations. A set of nested model runs at grid lengths down to 100m show that the models converge in terms of storm width, but the storm structures in the simulations with the smallest grid lengths are too narrow and too intense compared to the radar observations. The modelled storms were surrounded by a region of drizzle without ice reflectivities above 0 dBZ aloft, which was related to the dominance of ice crystals and was improved by allowing only aggregates as an ice particle habit. Simulations with graupel outperformed the standard configuration for heavy-rain profiles, but the storm structures were a factor 2 too wide and the convective cores 2 km too deep.
Resumo:
The most damaging winds in a severe extratropical cyclone often occur just ahead of the evaporating ends of cloud filaments emanating from the so-called cloud head. These winds are associated with low-level jets (LLJs), sometimes occurring just above the boundary layer. The question then arises as to how the high momentum is transferred to the surface. An opportunity to address this question arose when the severe ‘St Jude's Day’ windstorm travelled across southern England on 28 October 2013. We have carried out a mesoanalysis of a network of 1 min resolution automatic weather stations and high-resolution Doppler radar scans from the sensitive S-band Chilbolton Advanced Meteorological Radar (CAMRa), along with satellite and radar network imagery and numerical weather prediction products. We show that, although the damaging winds occurred in a relatively dry region of the cyclone, there was evidence within the LLJ of abundant precipitation residues from shallow convective clouds that were evaporating in a localized region of descent. We find that pockets of high momentum were transported towards the surface by the few remaining actively precipitating convective clouds within the LLJ and also by precipitation-free convection in the boundary layer that was able to entrain evaporatively cooled air from the LLJ. The boundary-layer convection was organized in along-wind rolls separated by 500 to about 3000 m, the spacing varying according to the vertical extent of the convection. The spacing was greatest where the strongest winds penetrated to the surface. A run with a medium-resolution version of the Weather Research and Forecasting (WRF) model was able to reproduce the properties of the observed LLJ. It confirmed the LLJ to be a sting jet, which descended over the leading edge of a weaker cold-conveyor-belt jet.
Resumo:
Radar has been applied to the study of insect migration for almost 40 years, but most entomological radars operate at X-band (9.4 GHz, 3.2 cm wavelength), and can only detect individuals of relatively large species, such as migratory grasshoppers and noctuid moths, over all of their flight altitudes. Many insects (including economically important species) are much smaller than this, but development of the requisite higher power and/or higher frequency radar systems to detect these species is often prohibitively expensive. In this paper, attention is focussed upon the uses of some recently-deployed meteorological sensing devices to investigate insect migratory flight behaviour, and especially its interactions with boundary layer processes. Records were examined from the vertically-pointing 35 GHz ‘Copernicus’ and 94 GHz ‘Galileo’ cloud radars at Chilbolton (Hampshire, England) for 12 cloudless and convective occasions in summer 2003, and one of these occasions (13 July) is presented in detail. Insects were frequently found at heights above aerosol particles, which represent passive tracers, indicating active insect movement. It was found that insect flight above the convective boundary layer occurs most often during the morning. The maximum radar reflectivity (an indicator of aerial insect biomass) was found to be positively correlated with maximum screen temperature.