24 resultados para Bunker Hill, Battle of, Boston, Mass., 1775
em CentAUR: Central Archive University of Reading - UK
Resumo:
An update of Owens et al. (2008) shows that the relationship between the coronal mass ejection (CME) rate and the heliospheric magnetic field strength predicts a field floor of less than 4 nT at 1 AU. This implies that the record low values measured during this solar minimum do not necessarily contradict the idea that open flux is conserved. The results are consistent with the hypothesis that CMEs add flux to the heliosphere and interchange reconnection between open flux and closed CME loops subtracts flux. An existing model embracing this hypothesis, however, overestimates flux during the current minimum, even though the CME rate has been low. The discrepancy calls for reasonable changes in model assumptions.
Resumo:
The 11-year solar cycle variation in the heliospheric magnetic field strength can be explained by the temporary buildup of closed flux released by coronal mass ejections (CMEs). If this explanation is correct, and the total open magnetic flux is conserved, then the interplanetary-CME closed flux must eventually open via reconnection with open flux close to the Sun. In this case each CME will move the reconnected open flux by at least the CME footpoint separation distance. Since the polarity of CME footpoints tends to follow a pattern similar to the Hale cycle of sunspot polarity, repeated CME eruption and subsequent reconnection will naturally result in latitudinal transport of open solar flux. We demonstrate how this process can reverse the coronal and heliospheric fields, and we calculate that the amount of flux involved is sufficient to accomplish the reversal within the 11 years of the solar cycle.
Resumo:
Three existing models of Interplanetary Coronal Mass Ejection (ICME) transit between the Sun and the Earth are compared to coronagraph and in situ observations: all three models are found to perform with a similar level of accuracy (i.e. an average error between observed and predicted 1AU transit times of approximately 11 h). To improve long-term space weather prediction, factors influencing CME transit are investigated. Both the removal of the plane of sky projection (as suffered by coronagraph derived speeds of Earth directed CMEs) and the use of observed values of solar wind speed, fail to significantly improve transit time prediction. However, a correlation is found to exist between the late/early arrival of an ICME and the width of the preceding sheath region, suggesting that the error is a geometrical effect that can only be removed by a more accurate determination of a CME trajectory and expansion. The correlation between magnetic field intensity and speed of ejecta at 1AU is also investigated. It is found to be weak in the body of the ICME, but strong in the sheath, if the upstream solar wind conditions are taken into account.
Resumo:
A method is described for the analysis of deuterated and undeuterated alpha-tocopherol in blood components using liquid chromatography coupled to an orthogonal acceleration time-of-flight (TOF) mass spectrometer. Optimal ionisation conditions for undeuterated (d0) and tri- and hexadeuterated (d3 or d6) alpha-tocopherol standards were found with negative ion mode electrospray ionisation. Each species produced an isotopically resolved single ion of exact mass. Calibration curves of pure standards were linear in the range tested (0-1.5 muM, 0-15 pmol injected). For quantification of d0 and d6 in blood components following a standard solvent extraction, a stable-isotope-labelled internal standard (d3-alpha-tocopherol) was employed. To counter matrix ion suppression effects, standard response curves were generated following identical solvent extraction procedures to those of the samples. Within-day and between-day precision were determined for quantification of d0- and d6-labelled alpha-tocopherol in each blood component and both averaged 3-10%. Accuracy was assessed by comparison with a standard high-performance liquid chromatography (HPLC) method, achieving good correlation (r(2) = 0.94), and by spiking with known concentrations of alpha-tocopherol (98% accuracy). Limits of detection and quantification were determined to be 5 and 50 fmol injected, respectively. The assay was used to measure the appearance and disappearance of deuterium-labelled alpha-tocopherol in human blood components following deuterium-labelled (d6) RRR-alpha-tocopheryl acetate ingestion. The new LC/TOFMS method was found to be sensitive, required small sample volumes, was reproducible and robust, and was capable of high throughput when large numbers of samples were generated. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Objectives: Our objective was to test the performance of CA125 in classifying serum samples from a cohort of malignant and benign ovarian cancers and age-matched healthy controls and to assess whether combining information from matrix-assisted laser desorption/ionization (MALDI) time-of-flight profiling could improve diagnostic performance. Materials and Methods: Serum samples from women with ovarian neoplasms and healthy volunteers were subjected to CA125 assay and MALDI time-of-flight mass spectrometry (MS) profiling. Models were built from training data sets using discriminatory MALDI MS peaks in combination with CA125 values and tested their ability to classify blinded test samples. These were compared with models using CA125 threshold levels from 193 patients with ovarian cancer, 290 with benign neoplasm, and 2236 postmenopausal healthy controls. Results: Using a CA125 cutoff of 30 U/mL, an overall sensitivity of 94.8% (96.6% specificity) was obtained when comparing malignancies versus healthy postmenopausal controls, whereas a cutoff of 65 U/mL provided a sensitivity of 83.9% (99.6% specificity). High classification accuracies were obtained for early-stage cancers (93.5% sensitivity). Reasons for high accuracies include recruitment bias, restriction to postmenopausal women, and inclusion of only primary invasive epithelial ovarian cancer cases. The combination of MS profiling information with CA125 did not significantly improve the specificity/accuracy compared with classifications on the basis of CA125 alone. Conclusions: We report unexpectedly good performance of serum CA125 using threshold classification in discriminating healthy controls and women with benign masses from those with invasive ovarian cancer. This highlights the dependence of diagnostic tests on the characteristics of the study population and the crucial need for authors to provide sufficient relevant details to allow comparison. Our study also shows that MS profiling information adds little to diagnostic accuracy. This finding is in contrast with other reports and shows the limitations of serum MS profiling for biomarker discovery and as a diagnostic tool
Resumo:
Interplanetary coronal mass ejections (ICMEs) are often observed to travel much faster than the ambient solar wind. If the relative speed between the two exceeds the fast magnetosonic velocity, then a shock wave will form. The Mach number and the shock standoff distance ahead of the ICME leading edge is measured to infer the vertical size of an ICME in a direction that is perpendicular to the solar wind flow. We analyze the shock standoff distance for 45 events varying between 0.5 AU and 5.5 AU in order to infer their physical dimensions. We find that the average ratio of the inferred vertical size to measured radial width, referred to as the aspect ratio, of an ICME is 2.8 ± 0.5. We also compare these results to the geometrical predictions from Paper I that forecast an aspect ratio between 3 and 6. The geometrical solution varies with heliocentric distance and appears to provide a theoretical maximum for the aspect ratio of ICMEs. The minimum aspect ratio appears to remain constant at 1 (i.e., a circular cross section) for all distances. These results suggest that possible distortions to the leading edge of ICMEs are frequent. But, these results may also indicate that the constants calculated in the empirical relationship correlating the different shock front need to be modified; or perhaps both distortions and a change in the empirical formulae are required.
Resumo:
The Solar TErrestrial RElations Observatory (STEREO) provides high cadence and high resolution images of the structure and morphology of coronal mass ejections (CMEs) in the inner heliosphere. CME directions and propagation speeds have often been estimated through the use of time-elongation maps obtained from the STEREO Heliospheric Imager (HI) data. Many of these CMEs have been identified by citizen scientists working within the SolarStormWatch project ( www.solarstormwatch.com ) as they work towards providing robust real-time identification of Earth-directed CMEs. The wide field of view of HI allows scientists to directly observe the two-dimensional (2D) structures, while the relative simplicity of time-elongation analysis means that it can be easily applied to many such events, thereby enabling a much deeper understanding of how CMEs evolve between the Sun and the Earth. For events with certain orientations, both the rear and front edges of the CME can be monitored at varying heliocentric distances (R) between the Sun and 1 AU. Here we take four example events with measurable position angle widths and identified by the citizen scientists. These events were chosen for the clarity of their structure within the HI cameras and their long track lengths in the time-elongation maps. We show a linear dependency with R for the growth of the radial width (W) and the 2D aspect ratio (χ) of these CMEs, which are measured out to ≈ 0.7 AU. We estimated the radial width from a linear best fit for the average of the four CMEs. We obtained the relationships W=0.14R+0.04 for the width and χ=2.5R+0.86 for the aspect ratio (W and R in units of AU).
Resumo:
A Lagrangian model of photochemistry and mixing is described (CiTTyCAT, stemming from the Cambridge Tropospheric Trajectory model of Chemistry And Transport), which is suitable for transport and chemistry studies throughout the troposphere. Over the last five years, the model has been developed in parallel at several different institutions and here those developments have been incorporated into one "community" model and documented for the first time. The key photochemical developments include a new scheme for biogenic volatile organic compounds and updated emissions schemes. The key physical development is to evolve composition following an ensemble of trajectories within neighbouring air-masses, including a simple scheme for mixing between them via an evolving "background profile", both within the boundary layer and free troposphere. The model runs along trajectories pre-calculated using winds and temperature from meteorological analyses. In addition, boundary layer height and precipitation rates, output from the analysis model, are interpolated to trajectory points and used as inputs to the mixing and wet deposition schemes. The model is most suitable in regimes when the effects of small-scale turbulent mixing are slow relative to advection by the resolved winds so that coherent air-masses form with distinct composition and strong gradients between them. Such air-masses can persist for many days while stretching, folding and thinning. Lagrangian models offer a useful framework for picking apart the processes of air-mass evolution over inter-continental distances, without being hindered by the numerical diffusion inherent to global Eulerian models. The model, including different box and trajectory modes, is described and some output for each of the modes is presented for evaluation. The model is available for download from a Subversion-controlled repository by contacting the corresponding authors.
Resumo:
We extend recent work that included the effect of pressure forces to derive the precession rate of eccentric accretion discs in cataclysmic variables to the case of double degenerate systems. We find that the logical scaling of the pressure force in such systems results in predictions of unrealistically high primary masses. Using the prototype AM CVn as a calibrator for the magnitude of the effect, we find that there is no scaling that applies consistently to all the systems in the class. We discuss the reasons for the lack of a superhump period to mass ratio relationship analogous to that known for SU UMa systems and suggest that this is because these secondaries do not have a single valued mass-radius relationship. We highlight the unreliability of mass-ratios derived by applying the SU UMa expression to the AM CVn binaries.