34 resultados para Bulk hetero-junction
em CentAUR: Central Archive University of Reading - UK
Resumo:
Most parameterizations for precipitating convection in use today are bulk schemes, in which an ensemble of cumulus elements with different properties is modelled as a single, representative entraining-detraining plume. We review the underpinning mathematical model for such parameterizations, in particular by comparing it with spectral models in which elements are not combined into the representative plume. The chief merit of a bulk model is that the representative plume can be described by an equation set with the same structure as that which describes each element in a spectral model. The equivalence relies on an ansatz for detrained condensate introduced by Yanai et al. (1973) and on a simplified microphysics. There are also conceptual differences in the closure of bulk and spectral parameterizations. In particular, we show that the convective quasi-equilibrium closure of Arakawa and Schubert (1974) for spectral parameterizations cannot be carried over to a bulk parameterization in a straightforward way. Quasi-equilibrium of the cloud work function assumes a timescale separation between a slow forcing process and a rapid convective response. But, for the natural bulk analogue to the cloud-work function (the dilute CAPE), the relevant forcing is characterised by a different timescale, and so its quasi-equilibrium entails a different physical constraint. Closures of bulk parameterization that use the non-entraining parcel value of CAPE do not suffer from this timescale issue. However, the Yanai et al. (1973) ansatz must be invoked as a necessary ingredient of those closures.
Resumo:
The paper describes a field study focused on the dispersion of a traffic-related pollutant within an area close to a busy intersection between two street canyons in Central London. Simultaneous measurements of airflow, traffic flow and carbon monoxide concentrations ([CO]) are used to explore the causes of spatial variability in [CO] over a full range of background wind directions. Depending on the roof-top wind direction, evidence of both flow channelling and recirculation regimes were identified from data collected within the main canyon and the intersection. However, at the intersection, the merging of channelled flows from the canyons increased the flow complexity and turbulence intensity. These features, coupled with the close proximity of nearby queuing traffic in several directions, led to the highest overall time-average measured [CO] occurring at the intersection. Within the main street canyon, the data supported the presence of a helical flow regime for oblique roof-top flows, leading to increased [CO] on the canyon leeward side. Predominant wind directions led to some locations having significantly higher diurnal average [CO] due to being mostly on the canyon leeward side during the study period. For all locations, small changes in the background wind direction could cause large changes in the in-street mean wind angle and local turbulence intensity, implying that dispersion mechanisms would be highly sensitive to small changes in above roof flows. During peak traffic flow periods, concentrations within parallel side streets were approximately four times lower than within the main canyon and intersection which has implications for controlling personal exposure. Overall, the results illustrate that pollutant concentrations can be highly spatially variable over even short distances within complex urban geometries, and that synoptic wind patterns, traffic queue location and building topologies all play a role in determining where pollutant hot spots occur.
Resumo:
Here, we identify the Arabidopsis thaliana ortholog of the mammalian DEAD box helicase, eIF4A-III, the putative anchor protein of exon junction complex (EJC) on mRNA. Arabidopsis eIF4A-III interacts with an ortholog of the core EJC component, ALY/Ref, and colocalizes with other EJC components, such as Mago, Y14, and RNPS1, suggesting a similar function in EJC assembly to animal eIF4A-III. A green fluorescent protein (GFP)-eIF4A-III fusion protein showed localization to several subnuclear domains: to the nucleoplasm during normal growth and to the nucleolus and splicing speckles in response to hypoxia. Treatment with the respiratory inhibitor sodium azide produced an identical response to the hypoxia stress. Treatment with the proteasome inhibitor MG132 led to accumulation of GFP-eIF4A-III mainly in the nucleolus, suggesting that transition of eIF4A-III between subnuclear domains and/or accumulation in nuclear speckles is controlled by proteolysis-labile factors. As revealed by fluorescence recovery after photobleaching analysis, the nucleoplasmic fraction was highly mobile, while the speckles were the least mobile fractions, and the nucleolar fraction had an intermediate mobility. Sequestration of eIF4A-III into nuclear pools with different mobility is likely to reflect the transcriptional and mRNA processing state of the cell.
Resumo:
In this work we demonstrate the value of performing a Hetero Diels-Alder reaction (HDAR) between Danishefsky’s diene and a range of aldehydes or imines, under microwave irradiation. By using a range of aldehydes and imines, including those derived from carbohydrates, access to functionalised 2,3-dihydro-4H-pyran-4-ones or 2,3-dihydro-4-pyridinones in good to excellent synthetic yields is possible. A particular strength of the methodology is its ability to access mimetics of C-linked disaccharides and C-linked aza disaccharides, targets of current therapeutic interest, in a rapid, convenient and diastereoselective manner. The effect of high pressure on the HDARs involving carbohydrate derived aldehydes and imines is also explored, with enhancement in yields occurring for the aldehyde substrates. Finally, HDARs using carbohydrate derived ketones, enones and enals are described under a range of conditions. Optimum results were obtained under high pressure conditions, with highly functionalized carbohydrate derivatives being afforded, in good yields, in this way.
Resumo:
Planning a Holliday: A new mode of binding to a stacked-X, four-way Holliday junction is described in which a chromophore molecule binds across the center of the junction and two adenine residues are replaced by the acridine chromophores at either side of the crossover. This binding mode is specific for the Holliday junction and does not cause unwinding of the DNA helices.
Resumo:
This review provides a discussion of recent developments in the asymmetric hetero Diels-Alder reaction (AHDAR), with particular emphasis on the synthesis of carbohydrates, their derivatives, and inhibitors of carbohydrate processing enzymes.
Resumo:
The role of metal ions in determining the solution conformation of the Holliday junction is well established, but to date the picture of metal ion binding from structural studies of the four-way DNA junction is very incomplete. Here we present two refined structures of the Holliday junction formed by the sequence d(TCGGTACCGA) in the presence of Na+ and Ca2+, and separately with Sr2+ to resolutions of 1.85 Angstrom and 1.65 Angstrom, respectively. This sequence includes the ACC core found to promote spontaneous junction formation, but its structure has not previously been reported. Almost complete hydration spheres can be defined for each metal cation. The Na+ sites, the most convincing observation of such sites in junctions to date, are one on either face of the junction crossover region, and stabilise the ordered hydration inside the junction arms. The four Ca2+ sites in the same structure are at the CG/CG steps in the minor groove. The Sr2+ ions occupy the TC/AG, GG/CC, and TA/TA sites in the minor groove, giving ten positions forming two spines of ions, spiralling through the minor grooves within each arm of the stacked-X structure. The two structures were solved in the two different C2 lattices previously observed, with the Sr2+ derivative crystallising in the more highly symmetrical form with two-fold symmetry at its centre. Both structures show an opening of the minor groove face of the junction of 8.4degrees in the Ca2+ and Na+ containing structure, and 13.4degrees in the Sr2+ containing structure. The crossover angles at the junction are 39.3degrees and 43.3degrees, respectively. In addition to this, a relative shift in the base pair stack alignment of the arms of 2.3 Angstrom is observed for the Sr2+ containing structure only. Overall these results provide an insight into the so-far elusive stabilising ion structure for the DNA Holliday junction. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Direct measurement of strain field in a mechanically loaded Norway spruce branch-stem junction was performed by means of electronic speckle pattern analysis. Results were compared with strain distribution in a polyester cast of identical shape as the branch-stem junction, and a simplified polyester model consisting of two half-cylinders. Compared to polyester models, the branch-stem junction was characterised by a very homogeneous distribution of strain, which can be interpreted as a homogeneous distribution of stress in terms of fraction of material strength. This optimised transfer of mechanical load from the branch to the stem is achieved by a combination of naturally optimised shape with, additionally, optimised mechanical wood properties in the junction area.
Resumo:
The antioxidant activity and interactions with copper of four olive oil phenolic compounds, namely oleuropein, hydroxytyrosol, 3,4- dihydroxyphenylethanol- elenolic acid ( 1), and 3,4- dihydroxyphenyl-ethanolelenolic acid dialdehyde ( 2), in olive oil and oil- in- water emulsions stored at 60 degrees C were studied. All four phenolic compounds significantly extended the induction time of lipid oxidation in olive oil with the order of activity being hydroxytyrosol > compound 1 > compound 2 > oleuropein > alpha- tocopherol; but in the presence of Cu( II), the stability of oil samples containing phenolic compounds decreased by at least 90%, and the antioxidant activity of hydroxytyrosol and compounds 1 and 2 became similar. In oil- in- water emulsions prepared from olive oil stripped of tocopherols, hydroxytyrosol enhanced the prooxidant effect of copper at pH 5.5 but not at pH 7.4. The stability of samples containing copper at pH 5.5 was not significantly different if oleuropein was present from that of the control. Oleuropein at pH 7.4, and compounds 1 and 2 at both pH values tested, reduced the prooxidant effect of copper. The lower stability and the higher reducing capacity of all compounds at pH 7.4 could not explain the higher stability of emulsions containing phenolic compounds at this pH value. However, mixtures containing hydroxytyrosol or oleuropein with copper showed higher 1,1-diphenyl- 2- picrylhydrazyl radical scavenging activity at pH 7.4 than at pH 5.5. Moreover, the compound 2- copper complex showed higher radical scavenging activity then the uncomplexed compound at pH 5.5. It can be concluded that the formation of a copper complex with radical scavenging activity is a key step in the antioxidant action of the olive oil phenolic compounds in an emulsion containing copper ions.
Resumo:
From the carbolithiation of N,N-dimethylamino fulvene (3a) and different ortho-lithiated heterocycles (furan, thiophene and N-methylpyrrole), the corresponding lithium cyclopentadienide intermediate (4a-c) was formed. These three lithiated intermediates underwent a transmetallation reaction with TiCl4 resulting in dimethylamino-functionalised titanocenes 5a-c. When these titanocenes were tested against LLC-PK cells, the IC50 values obtained were of 240, and 28 mu M for titanocenes 5a and 5b, respectively. The most cytotoxic titanocene 5c with an IC50 value of 5.5 mu M is found to be almost as cytotoxic as cis-platin, which showed an IC50 value of 3.3 mu M, when tested on the LLC-PK cell line, and titanocene 5c is approximately 400 times better than titanocene dichloride itself. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Asynchronous Optical Sampling has the potential to improve signal to noise ratio in THz transient sperctrometry. The design of an inexpensive control scheme for synchronising two femtosecond pulse frequency comb generators at an offset frequency of 20 kHz is discussed. The suitability of a range of signal processing schemes adopted from the Systems Identification and Control Theory community for further processing recorded THz transients in the time and frequency domain are outlined. Finally, possibilities for femtosecond pulse shaping using genetic algorithms are mentioned.
Resumo:
The alignment of model amyloid peptide YYKLVFFC is investigated in bulk and at a solid surface using a range of spectroscopic methods employing polarized radiation. The peptide is based on a core sequence of the amyloid beta (A beta) peptide, KLVFF. The attached tyrosine and cysteine units are exploited to yield information on alignment and possible formation of disulfide or dityrosine links. Polarized Raman spectroscopy on aligned stalks provides information on tyrosine orientation, which complements data from linear dichroism (LD) on aqueous solutions subjected to shear in a Couette cell. LD provides a detailed picture of alignment of peptide strands and aromatic residues and was also used to probe the kinetics of self-assembly. This suggests initial association of phenylalanine residues, followed by subsequent registry of strands and orientation of tyrosine residues. X-ray diffraction (XRD) data from aligned stalks is used to extract orientational order parameters from the 0.48 nm reflection in the cross-beta pattern, from which an orientational distribution function is obtained. X-ray diffraction on solutions subject to capillary flow confirmed orientation in situ at the level of the cross-beta pattern. The information on fibril and tyrosine orientation from polarized Raman spectroscopy is compared with results from NEXAFS experiments on samples prepared as films on silicon. This indicates fibrils are aligned parallel to the surface, with phenyl ring normals perpendicular to the surface. Possible disulfide bridging leading to peptide dimer formation was excluded by Raman spectroscopy, whereas dityrosine formation was probed by fluorescence experiments and was found not to occur except under alkaline conditions. Congo red binding was found not to influence the cross-beta XRD pattern.
Resumo:
This paper assesses the potential for using building integrated photovoltaic (BIPV) roof shingles made from triple-junction amorphous silicon (3a-Si) for electrification and as a roofing material in tropical countries, such as Accra, Ghana. A model roof was constructed using triple-junction amorphous (3a-Si) PV on one section and conventional roofing tiles on the other. The performance of the PV module and tiles were measured, over a range of ambient temperatures and solar irradiance. PVSyst (a computer design software) was used to determine the most appropriate angle of tilt. It was observed that 3a-Si performs well in conditions such as Accra, because it is insensitive to high temperatures. Building integration gives security benefits, and reduces construction costs and embodied energy, compared to freestanding PV systems. Again, it serves as a means of protection from salt spray from the oceans and works well even when shaded. However, compared to conventional roofing materials, 3a-Si would increase the indoor temperature by 1-2 °C depending on the surface area of the roof covered with the PV modules. The results presented in this research enhance the understanding of varying factors involved in the selection of an appropriate method of PV installation to offset the short falls of the conventional roofing material in Ghana.