9 resultados para Bulbourethral Glands

em CentAUR: Central Archive University of Reading - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Earthworms of the family Lumbricidae, which includes many common species, produce and secrete up to millimeter-sized calcite granules, and the intricate fine-scale zoning of their constituent crystals is unique for a biomineral. Granule calcite is produced by crystallization of amorphous calcium carbonate (ACC) that initially precipitates within the earthworm calciferous glands, then forms protogranules by accretion on quartz grain cores. Crystallization of ACC is mediated by migrating fluid films and is largely complete within 24 11 of ACC production and before granules leave the earthworm. Variations in the density of defects formed as a byproduct of trace element incorporation during calcite crystall growth have generated zoning that can be resolved by cathodoluminescence imaging at ultraviolet to blue wavelengths and using the novel technique of scanning electron microscope charge contrast imaging. Mapping of calcite crystal orientations by electron backscatter diffraction reveals an approximate radial fabric to the granules that reflects crystal growth from internal nucleation sites toward their margins. The survival within granules of ACC inclusions for months after they enter soils indicates that they crystallize only within the earthworm and in the presence of fluids containing biochemical catalysts. The earthworm probably promotes crystallization of ACC in order to prevent remobilization of the calcium carbonate by dissolution. Calcite granules vividly illustrate the role of transient precursors in biomineralization, but the underlying question of why earth-worms produce granules in volumes sufficient to have a measurable impact on soil carbon cycling remains to be answered.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secretion of LH and FSH from the anterior pituitary is regulated primarily by hypothalamic GnRH and ovarian steroid hormones. More recent evidence indicates regulatory roles for certain members of the transforming growth factor beta (TGF beta) superfamily including inhibin and activin. The aim of this study was to identify expression of mRNAs encoding key receptors and ligands of the inhibin/activin system in the hen pituitary gland and to monitor their expression throughout the 24-25-h ovulatory cycle. Hens maintained on long days (16 h light/8 h dark) were killed 20, 12, 6 and 2 h before predicted ovulation of a midsequence egg (n = 8 per group). Anterior pituitary glands were removed, RNA extracted and cDNA synthesized. Plasma concentrations of LH, FSH, progesterone and inhibin A were measured. Real-time quantitative PCR was used to quantify pituitary expression of mRNAs encoding betaglycan, activin receptor (ActR) subtypes (type I, IIA), GnRH receptor (GnP,H-R), LH beta subunit, FSH beta subunit and GAPDH. Levels of mRNA for inhibin/activin beta A and beta B subunits, inhibin alpha subunit, follistatin and ActRIIB mRNA in pituitary were undetectable by quantitative PCR (< 2 amol/reaction). Significant changes in expression (P < 0.05) of ActRIIA and betaglycan mRNA were found, both peaking 6 h before ovulation just prior to the preovulatory LH surge and reaching a nadir 2 h before ovulation, just after the LH surge. There were no significant changes in expression of ActRI mRNA throughout the cycle although values were correlated with mRNA levels for both ActRIIA (r=0.77; P < 0.001) and betaglycan (r=0.45; P < 0.01). Expression of GnRH-R mRNA was lowest 20 h before ovulation and highest (P < 0.05) 6 h before ovulation; values were weakly correlated with betaglycan (r=0.33; P=0.06) and ActRIIA (r=0.34; P=0.06) mRNA levels. Expression of mRNAs encoding LH beta and FSH beta subunit were both lowest (P < 0.05) after the LH surge, 2 h before ovulation. These results are consistent with an endocrine, but not a local intrapituitary, role of inhibin-related proteins in modulating gonadotroph function during the ovulatory cycle of the hen, potentially through interaction with betaglycan and ActRIIA. In contrast to mammals, intrapituitary expression of inhibin/activin subunits and follistatin appears to be extremely low or absent in the domestic fowl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of experiments was conducted to examine the mechanism by which removal of the thyroid glands in seasonally suppressed rams brings about rapid testicular growth. In the first experiment, thyroidectomy at the nadir of the testicular cycle (late winter) initiated testis growth without any detectable change in the extent of spermatogenesis compared with sham-operated controls. The serum concentration of FSH, but not LH, was also markedly increased by thyroidectomy. In the second experiment, serum FSH concentration was again increased by thyroidectomy in late winter but there was no effect of thyroidectomy on LH concentration, LH pulses (measured in frequent blood samples) or testosterone concentration. Furthermore, there was no evidence of a change in central dopaminergic inhibition of GnRH, as measured by the pulsatile LH response to an i.m. injection of the dopaminergic D-2 agonist bromocriptine or antagonist sulpiride. The rapid increase in FSH concentration occurred despite a markedly increased serum inhibin A concentration in thyroidectomized rams. Therefore, the efficacy of inhibin feedback was examined by testing the FSH-suppressive effect of an inhibin preparation (5 ml charcoal-stripped bovine follicular fluid i.v.) in long-term thyroidectomized and thyroid intact castrated rams. Bovine follicular fluid suppressed FSH concentrations in control rams as expected but in marked contrast, was completely without effect in thyroidectomized animals. In castrated rams, the FSH concentration was only marginally increased by thyroidectomy, indicating that there is a major component of the mediation of the effects of thyroidectomy that is testicular in origin. It was concluded that a reduction in the ability of endogenous inhibin to inhibit FSH release at the pituitary, rather than a hypothalamic mechanism, is the primary cause of the stimulation of testis growth by thyroidectomy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Alpha-Tocopherol Beta-Carotene Cancer Prevention Study has provided the first evidence implicating vitamin E in hormone synthesis. The effect of vitamin E on stereoidogenesis in testes and adrenal glands was assessed in growing rats using Affymetrix gene-chip technology. Dietary supplementation of rats with vitamin E (60 mg/kg feed) for a period of 429 days caused a significant repression of genes encoding for proteins centrally involved in the uptake (low-density lipoprotein receptor) and de novo synthesis (for example, 7-dehydrocholesterol reductase, 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl-coenzyme A reductase, isopentenyl-diphosphate delta-isomerase, and farnesyl pyrophosphate synthetase) of cholesterol, the precursor of all steroid hormones. The present investigation indicates that dietary vitamin E may induce changes in stereoidogenesis by affecting cholesterol homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secretion of LH and FSH from the anterior pituitary is regulated primarily by hypothalamic GnRH and ovarian steroid hormones. More recent evidence indicates regulatory roles for certain members of the transforming growth factor beta (TGF beta) superfamily including inhibin and activin. The aim of this study was to identify expression of mRNAs encoding key receptors and ligands of the inhibin/activin system in the hen pituitary gland and to monitor their expression throughout the 24-25-h ovulatory cycle. Hens maintained on long days (16 h light/8 h dark) were killed 20, 12, 6 and 2 h before predicted ovulation of a midsequence egg (n = 8 per group). Anterior pituitary glands were removed, RNA extracted and cDNA synthesized. Plasma concentrations of LH, FSH, progesterone and inhibin A were measured. Real-time quantitative PCR was used to quantify pituitary expression of mRNAs encoding betaglycan, activin receptor (ActR) subtypes (type I, IIA), GnRH receptor (GnP,H-R), LH beta subunit, FSH beta subunit and GAPDH. Levels of mRNA for inhibin/activin beta A and beta B subunits, inhibin alpha subunit, follistatin and ActRIIB mRNA in pituitary were undetectable by quantitative PCR (< 2 amol/reaction). Significant changes in expression (P < 0.05) of ActRIIA and betaglycan mRNA were found, both peaking 6 h before ovulation just prior to the preovulatory LH surge and reaching a nadir 2 h before ovulation, just after the LH surge. There were no significant changes in expression of ActRI mRNA throughout the cycle although values were correlated with mRNA levels for both ActRIIA (r=0.77; P < 0.001) and betaglycan (r=0.45; P < 0.01). Expression of GnRH-R mRNA was lowest 20 h before ovulation and highest (P < 0.05) 6 h before ovulation; values were weakly correlated with betaglycan (r=0.33; P=0.06) and ActRIIA (r=0.34; P=0.06) mRNA levels. Expression of mRNAs encoding LH beta and FSH beta subunit were both lowest (P < 0.05) after the LH surge, 2 h before ovulation. These results are consistent with an endocrine, but not a local intrapituitary, role of inhibin-related proteins in modulating gonadotroph function during the ovulatory cycle of the hen, potentially through interaction with betaglycan and ActRIIA. In contrast to mammals, intrapituitary expression of inhibin/activin subunits and follistatin appears to be extremely low or absent in the domestic fowl.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using liposomes to deliver drugs to and through human skin is controversial, as their function varies with type and composition. Thus they may act as drug carriers controlling release of the medicinal agent. Alternatively, they may provide a localized depot in the skin so minimizing systemic effects or can be used for targeting delivery to skin appendages (hair follicles and sweat glands). Liposomes may also enhance transdermal drug delivery, increasing systemic drug concentrations. With such a multiplicity of functions, it is not surprising that mechanisms of liposomal delivery of therapeutic agents to and through the skin are unclear. Accordingly, this article provides an overview of the modes and mechanisms of action of different vesicles as drug delivery vectors in human skin. Our conclusion is that vesicles, depending on the composition and method of preparation, can vary with respect to size, lamellarity, charge, membrane fluidity or elasticity and drug entrapment. This variability allows for multiple functions ranging from local to transdermal effects. Application to dissimilar skins (animal or human) via diverse protocols may reveal different mechanisms of action with possible vesicle skin penetration reaching different depths, from surface assimilation to (rarely) the viable tissue and subsequent systemic absorption.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of forage conservation method on plasma lipids, mammary lipogenesis, and milk fat were examined in 2 complementary experiments. Treatments comprised fresh grass, hay, or untreated (UTS) or formic acid treated silage (FAS) prepared from the same grass sward. Preparation of conserved forages coincided with the collection of samples from cows fed fresh grass. In the first experiment, 5 multiparous Finnish Ayrshire cows (229 d in milk) were used to compare a diet based on fresh grass followed by hay during 2 consecutive 14-d periods, separated by a 5-d transition during which extensively wilted grass was fed. In the second experiment, 5 multiparous Finnish Ayrshire cows (53 d in milk) were assigned to 1 of 2 blocks and allocated treatments according to a replicated 3 × 3 Latin square design, with 14-d periods to compare hay, UTS, and FAS. Cows received 7 or 9 kg/d of the same concentrate in experiments 1 and 2, respectively. Arterial concentrations of triacylglycerol (TAG) and phospholipid were higher in cows fed fresh grass, UTS, and FAS compared with hay. Nonesterified fatty acid (NEFA) concentrations and the relative abundance of 18:2n-6 and 18:3n-3 in TAG of arterial blood were also higher in cows fed fresh grass than conserved forages. On all diets, TAG was the principle source of fatty acids (FA) for milk fat synthesis, whereas mammary extraction of NEFA was negligible, except during zero-grazing, which was associated with a lower, albeit positive calculated energy balance. Mammary FA uptake was higher and the synthesis of 16:0 lower in cows fed fresh grass than hay. Conservation of grass by drying or ensiling had no influence on mammary extraction of TAG and NEFA, despite an increase in milk fat secretion for silages compared with hay and for FAS than UTS. Relative to hay, milk fat from fresh grass contained lower 12:0, 14:0, and 16:0 and higher S3,R7,R11,15-tetramethyl-16:0, cis-9 18:1, trans-11 18:1, cis-9,trans-11 18:2, 18:2n-6, and 18:3n-3 concentrations. Even though conserved forages altered mammary lipogenesis, differences in milk FA composition were relatively minor, other than a higher enrichment of S3,R7,R11,15-tetramethyl-16:0 in milk from silages compared with hay. In conclusion, differences in milk fat composition on fresh grass relative to conserved forages were associated with a lower energy balance, increased uptake of preformed FA, and decreased synthesis of 16:0 de novo in the mammary glands, in the absence of alterations in stearoyl-coenzyme A desaturase activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serine proteases from the circulation, inflammatory cells, digestive glands and microorganisms can signal to cells by cleaving protease-activated receptors (PARs), a family of four G-protein-coupled receptors. Proteases cleave PARs at specific sites to expose tethered ligand domains that bind to and activate the cleaved receptors. Despite this irreversible mechanism of activation, PAR signaling is tightly regulated to prevent the uncontrolled stimulation of cells. Although PARs are found in all organ systems, protease signaling is of particular interest in the gastrointestinal tract, where proteases regulate neurotransmission, secretion, motility, epithelial permeability and intestinal inflammation, and can thus contribute to disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trypsin and mast cell tryptase cleave proteinase-activated receptor 2 (PAR2) to induce alterations in contraction of airway smooth muscle that have been implicated in asthma in experimental animals. Although tryptase inhibitors are under development for treatment of asthma, little is known about the localization and function of PAR2 in human airways. We detected PAR2 expression in primary cultures of human airway smooth muscle cells using reverse transcriptase/polymerase chain reaction (RT-PCR) and immunofluorescence. The PAR2 agonists trypsin, tryptase, and an activating peptide (SLIGKV-NH2) stimulated calcium mobilization in these cells. PAR2 agonists strongly desensitized responses to a second challenge of trypsin and SLIGKV-NH2, but not to thrombin, indicating that they activate a receptor distinct from the thrombin receptors. Immunoreactive PAR2 was detected in smooth muscle, epithelium, glands, and endothelium of human bronchi. Trypsin, SLIGKV-NH2, and tryptase stimulated contraction of isolated human bronchi. Contraction was increased by removal of the epithelium and diminished by indomethacin. Thus, PAR2 is expressed by human bronchial smooth muscle where its activation mobilizes intracellular Ca2+ and induces contraction. These results are consistent with the hypothesis that PAR2 agonists, including tryptase, induce bronchoconstriction of human airway by stimulating smooth muscle contraction. PAR2 antagonists may be useful drugs to prevent bronchoconstriction.