7 resultados para Bufo marinus - Cardiovascular system

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inferring the spatial expansion dynamics of invading species from molecular data is notoriously difficult due to the complexity of the processes involved. For these demographic scenarios, genetic data obtained from highly variable markers may be profitably combined with specific sampling schemes and information from other sources using a Bayesian approach. The geographic range of the introduced toad Bufo marinus is still expanding in eastern and northern Australia, in each case from isolates established around 1960. A large amount of demographic and historical information is available on both expansion areas. In each area, samples were collected along a transect representing populations of different ages and genotyped at 10 microsatellite loci. Five demographic models of expansion, differing in the dispersal pattern for migrants and founders and in the number of founders, were considered. Because the demographic history is complex, we used an approximate Bayesian method, based on a rejection-regression algorithm. to formally test the relative likelihoods of the five models of expansion and to infer demographic parameters. A stepwise migration-foundation model with founder events was statistically better supported than other four models in both expansion areas. Posterior distributions supported different dynamics of expansion in the studied areas. Populations in the eastern expansion area have a lower stable effective population size and have been founded by a smaller number of individuals than those in the northern expansion area. Once demographically stabilized, populations exchange a substantial number of effective migrants per generation in both expansion areas, and such exchanges are larger in northern than in eastern Australia. The effective number of migrants appears to be considerably lower than that of founders in both expansion areas. We found our inferences to be relatively robust to various assumptions on marker. demographic, and historical features. The method presented here is the only robust, model-based method available so far, which allows inferring complex population dynamics over a short time scale. It also provides the basis for investigating the interplay between population dynamics, drift, and selection in invasive species.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiovascular disease represents a major clinical problem affecting a significant proportion of the world's population and remains the main cause of death in the UK. The majority of therapies currently available for the treatment of cardiovascular disease do not cure the problem but merely treat the symptoms. Furthermore, many cardioactive drugs have serious side effects and have narrow therapeutic windows that can limit their usefulness in the clinic. Thus, the development of more selective and highly effective therapeutic strategies that could cure specific cardiovascular diseases would be of enormous benefit both to the patient and to those countries where healthcare systems are responsible for an increasing number of patients. In this review, we discuss the evidence that suggests that targeting the cell cycle machinery in cardiovascular cells provides a novel strategy for the treatment of certain cardiovascular diseases. Those cell cycle molecules that are important for regulating terminal differentiation of cardiac myocytes and whether they can be targeted to reinitiate cell division and myocardial repair will be discussed as will the molecules that control vascular smooth muscle cell (VSMC) and endothelial cell proliferation in disorders such as atherosclerosis and restenosis. The main approaches currently used to target the cell cycle machinery in cardiovascular disease have employed gene therapy techniques. We will overview the different methods and routes of gene delivery to the cardiovascular system and describe possible future drug therapies for these disorders. Although the majority of the published data comes from animal studies, there are several instances where potential therapies have moved into the clinical setting with promising results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micro-computed tomography (μCT) has been successfully used to study the cardiovascular system of mouse embryos in situ. With the use of barium as a suitable contrast agent, blood vessels have been imaged and analysed quantitatively such as blood volume and vessel sizes on embryos of ages 14.5 to 16.5 days old. The advantage of using this imaging modality is that it has provided three dimensional information whilst leaving samples intact for further study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite being generally perceived as detrimental to the cardiovascular system, testosterone has marked beneficial vascular effects; most notably it acutely and directly causes vasodilatation. Indeed, men with hypotestosteronaemia can present with myocardial ischemia and angina which can be rapidly alleviated by infusion of testosterone. To date, however, in vitro studies have failed to provide a convincing mechanism to account for this clinically important effect. Here, using whole-cell patch-clamp recordings to measure current flow through recombinant human L-type Ca2+ channel alpha(1C) subunits (Ca(v)1.2), we demonstrate that testosterone inhibits such currents in a concentration-dependent manner. Importantly, this occurs over the physiological range of testosterone concentrations (IC50 34 nM), and is not mimicked by the metabolite 5alpha-androstan-17beta-ol-3-one (DHT), nor by progesterone or estradiol, even at high (10 microM) concentration. L-type Ca2+ channels in the vasculature are also important clinical targets for vasodilatory dihydropyridines. A single point mutation (T1007Y) almost completely abolishes nifedipine sensitivity in our recombinant expression system. Crucially, the same mutation renders the channels insensitive to testosterone. Our data strongly suggest, for the first time, the molecular requirements for testosterone binding to L-type Ca2+ channels, thereby supporting its beneficial role as an endogenous Ca2+ channel antagonist in the treatment of cardiovascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental evidence suggests that nitric oxide (NO) and hydrogen sulfide (H2S) signaling pathways are intimately intertwined, with mutual attenuation or potentiation of biological responses in the cardiovascular system and elsewhere. The chemical basis of this interaction is elusive. Moreover, polysulfides recently emerged as potential mediators of H2S/sulfide signaling, but their biosynthesis and relationship to NO remain enigmatic. We sought to characterize the nature, chemical biology, and bioactivity of key reaction products formed in the NO/sulfide system. At physiological pH, we find that NO and sulfide form a network of cascading chemical reactions that generate radical intermediates as well as anionic and uncharged solutes, with accumulation of three major products: nitrosopersulfide (SSNO−), polysulfides, and dinitrososulfite N-nitrosohydroxylamine-N-sulfonate (SULFI/NO), each with a distinct chemical biology and in vitro and in vivo bioactivity. SSNO− is resistant to thiols and cyanolysis, efficiently donates both sulfane sulfur and NO, and potently lowers blood pressure. Polysulfides are both intermediates and products of SSNO− synthesis/decomposition, and they also decrease blood pressure and enhance arterial compliance. SULFI/NO is a weak combined NO/nitroxyl donor that releases mainly N2O on decomposition; although it affects blood pressure only mildly, it markedly increases cardiac contractility, and formation of its precursor sulfite likely contributes to NO scavenging. Our results unveil an unexpectedly rich network of coupled chemical reactions between NO and H2S/sulfide, suggesting that the bioactivity of either transmitter is governed by concomitant formation of polysulfides and anionic S/N-hybrid species. This conceptual framework would seem to offer ample opportunities for the modulation of fundamental biological processes governed by redox switching and sulfur trafficking.