30 resultados para Brown Band Disease, Maldives, prevalence, host range, coral diseases
em CentAUR: Central Archive University of Reading - UK
Resumo:
BACKGROUND:The Salmonella enterica serovar Derby is frequently isolated from pigs and turkeys whereas serovar Mbandaka is frequently isolated from cattle, chickens and animal feed in the UK. Through comparative genomics, phenomics and mutant construction we previously suggested possible mechanistic reasons why these serovars demonstrate apparently distinct host ranges. Here, we investigate the genetic and phenotypic diversity of these two serovars in the UK. We produce a phylogenetic reconstruction and perform several biochemical assays on isolates of S. Derby and S. Mbandaka acquired from sites across the UK between the years 2000 and 2010. RESULTS:We show that UK isolates of S. Mbandaka comprise of one clonal lineage which is adapted to proficient utilisation of metabolites found in soya beans under ambient conditions. We also show that this clonal lineage forms a biofilm at 25 °C, suggesting that this serovar maybe well adapted to survival ex vivo, growing in animal feed. Conversely, we show that S. Derby is made of two distinct lineages, L1 and L2. These lineages differ genotypically and phenotypically, being divided by the presence and absence of SPI-23 and the ability to more proficiently invade porcine jejunum derived cell line IPEC-J2. CONCLUSION:The results of this study lend support to the hypothesis that the differences in host ranges of S. Derby and S. Mbandaka are adaptations to pathogenesis, environmental persistence, as well as utilisation of metabolites abundant in their respective host environments.
Resumo:
Background: Antimicrobials are used to directly control bacterial infections in pet (ornamental) fish and are routinely added to the water these fish are shipped in to suppress the growth of potential pathogens during transport. Methodology/Principal Findings: To assess the potential effects of this sustained selection pressure, 127 Aeromonas spp. isolated from warm and cold water ornamental fish species were screened for tolerance to 34 antimicrobials. Representative isolates were also examined for the presence of 54 resistance genes by a combination of miniaturized microarray and conventional PCR. Forty-seven of 94 Aeromonas spp. isolates recovered from tropical ornamental fish and their carriage water were tolerant to >= 15 antibiotics, representing seven or more different classes of antimicrobial. The quinolone and fluoroquinolone resistance gene, qnrS2, was detected at high frequency (37% tested recent isolates were positive by PCR). Class 1 integrons, IncA/C broad host range plasmids and a range of other antibiotic resistance genes, including floR, blaTEM21, tet(A), tet(D), tet(E), qacE2, sul1, and a number of different dihydrofolate reductase and aminoglycoside transferase coding genes were also detected in carriage water samples and bacterial isolates. Conclusions: These data suggest that ornamental fish and their carriage water act as a reservoir for both multi-resistant bacteria and resistance genes.
Resumo:
Piriformospora indica (Sebacinaceae) is a cultivable root endophytic fungus. It colonises the roots of a wide range of host plants. In many settings colonisation promotes host growth, increases yield and protects the host from fungal diseases. We evaluated the effect of P. indica on Fusarium head blight (FHB) disease of winter (cv. Battalion) and spring (cv. Paragon, Mulika, Zircon, Granary, KWS Willow and KWS Kilburn) wheat and consequent contamination by the mycotoxin deoxynivalenol (DON) under UK weather conditions. Interactions of P. indica with an arbuscular mycorrhizal fungus (Funneliformis mosseae), fungicide application (Aviator Xpro) and low and high fertiliser levels were considered. P. indica application reduced FHB disease severity and incidence by 70%. It decreased mycotoxin DON concentration of winter and spring wheat samples by 70% and 80% respectively. P. indica also increased above ground biomass, 1000 grain weight and total grain weight. P. indica reduced disease severity and increased yield in both high and low fertiliser levels. The effect of P. indica was compatible with F. mosseae and foliar fungicide application. P. indica did not have any effects on plant tissue nutrients. These results suggest that P. indica might be useful in biological control of Fusarium diseases of wheat.
Resumo:
Pseudomonas syringae pv. phaseolicola causes halo blight of the common bean, Phaseolus vulgaris, worldwide and remains difficult to control. Races of the pathogen cause either disease symptoms or a resistant hypersensitive response on a series of differentially reacting bean cultivars. The molecular genetics of the interaction between P. syringae pv. phaseolicola and bean, and the evolution of bacterial virulence, have been investigated in depth and this research has led to important discoveries in the field of plant-microbe interactions. In this review, we discuss several of the areas of study that chart the rise of P. syringae pv. phaseolicola from a common pathogen of bean plants to a molecular plant-pathogen supermodel bacterium. Taxonomy: Bacteria; Proteobacteria, gamma subdivision; order Pseudomonadales; family Pseudomonadaceae; genus Pseudomonas; species Pseudomonas syringae; Genomospecies 2; pathogenic variety phaseolicola. Microbiological properties: Gram-negative, aerobic, motile, rod-shaped, 1.5 µm long, 0.7-1.2 µm in diameter, at least one polar flagellum, optimal temperatures for growth of 25-30 °C, oxidase negative, arginine dihydrolase negative, levan positive and elicits the hypersensitive response on tobacco. Host range: Major bacterial disease of common bean (Phaseolus vulgaris) in temperate regions and above medium altitudes in the tropics. Natural infections have been recorded on several other legume species, including all members of the tribe Phaseoleae with the exception of Desmodium spp. and Pisum sativum. Disease symptoms: Water-soaked lesions on leaves, pods, stems or petioles, that quickly develop greenish-yellow haloes on leaves at temperatures of less than 23 °C. Infected seeds may be symptomless, or have wrinkled or buttery-yellow patches on the seed coat. Seedling infection is recognized by general chlorosis, stunting and distortion of growth. Epidemiology: Seed borne and disseminated from exudation by water-splash and wind occurring during rainfall. Bacteria invade through wounds and natural openings (notably stomata). Weedy and cultivated alternative hosts may also harbour the bacterium. Disease control: Some measure of control is achieved with copper formulations and streptomycin. Pathogen-free seed and resistant cultivars are recommended. Useful websites: Pseudomonas-plant interaction http://www.pseudomonas-syringae.org/; PseudoDB http://xbase.bham.ac.uk/pseudodb/; Plant Associated and Environmental Microbes Database (PAMDB) http://genome.ppws.vt.edu/cgi-bin/MLST/home.pl; PseudoMLSA Database http://www.uib.es/microbiologiaBD/Welcome.html.
Resumo:
Plant pathology has a long-standing tradition of classifying microbes as pathogens, endophytes or saprophytes. Lifestyles of pathogens are categorized as biotrophic, necrotrophic or hemibiotrophic. Botrytis species are considered by many to be archetypal examples of necrotrophic fungi, with B. cinerea being the most extensively studied species because of its broad host range and economic impact. In this review, we discuss recent work which illustrates that B. cinerea is capable of colonizing plants internally, presumably as an endophyte, without causing any disease or stress symptoms. The extent of the facultative endophytic behaviour of B. cinerea and its relevance in the ecology and disease epidemiology may be vastly underestimated. Moreover, we discuss the recent discovery of a novel Botrytis species, B. deweyae, which normally grows as an endophyte in ornamental daylilies (Hemerocallis), but displays facultative pathogenic behaviour, and is increasingly causing economic damage. We propose that the emergence of endophytes ‘gone rogue’ as novel diseases may be related to increased inbreeding of hybrid lines and reduced genetic diversity. These observations lead us to argue that the sometimes inflexible classification of pathogenic microbes by their lifestyles requires serious reconsideration. There is much more variety to the interactions of Botrytis with its hosts than the eye (or the plant pathologist) can see, and this may be true for other microbes interacting with plants.
Resumo:
Conceptualizing climate as a distinct variable limits our understanding of the synergies and interactions between climate change and the range of abiotic and biotic factors, which influence animal health. Frameworks such as eco-epidemiology and the epi-systems approach, while more holistic, view climate and climate change as one of many discreet drivers of disease. Here, I argue for a new paradigmatic framework: climate-change syndemics. Climate-change syndemics begins from the assumption that climate change is one of many potential influences on infectious disease processes, but crucially is unlikely to act independently or in isolation; and as such, it is the inter-relationship between factors that take primacy in explorations of infectious disease and climate change. Equally importantly, as climate change will impact a wide range of diseases, the frame of analysis is at the collective rather than individual level (for both human and animal infectious disease) across populations.
Resumo:
Influenza viruses attach to host cells by binding to terminal sialic acid (Neu5Ac) on glycoproteins or glycolipids. Both the linkage of Neu5Ac and the identity of other carbohydrates within the oligosaccharide are thought to play roles in restricting the host range of the virus. In this study, the receptor specificity of an H5 avian influenza virus haemagglutinin protein that has recently infected man (influenza strain A/Vietnam/1194/04) has been probed using carbohydrate functionalised poly(acrylic acid) polymers. A baculovirus expression system that allows facile and safe analysis of the Neu5Ac binding specificity of mutants of H5 HA engineered at sites that are predicted to effect a switch in host range has also been developed. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Many viruses, including human influenza A virus, have developed strategies for counteracting the host type I interferon (IFN) response. We have explored whether avian influenza viruses were less capable of combating the type I IFN response in mammalian cells, as this might be a determinant of host range restriction. A panel of avian influenza viruses isolated between 1927 and 1997 was assembled. The selected viruses showed variation in their ability to activate the expression of a reporter gene under the control of the IFN-beta promoter and in the levels of IFN induced in mammalian cells. Surprisingly, the avian NS1 proteins expressed alone or in the genetic background of a human influenza virus controlled IFN-beta induction in a manner similar to the NS1 protein of human strains. There was no direct correlation between the IFN-beta induction and replication of avian influenza viruses in human A549 cells. Nevertheless, human cells deficient in the type I IFN system showed enhanced replication of the avian viruses studied, implying that the human type I IFN response limits avian influenza viruses and can contribute to host range restriction.
Resumo:
We previously described the use of an established reverse genetics system for the generation of recombinant human influenza A viruses from cloned cDNAs. Here, we have assembled a set of plasmids to allow recovery of the avian H5N1 influenza virus A/Turkey/England/50-92/91 entirely from cDNA. This system enables us to introduce mutations or truncations into the cDNAs to create mutant viruses altered specifically in a chosen gene. These mutant viruses can then be used in future pathogenesis studies in chickens and in studies to understand the host range restrictions of avian influenza viruses in humans.
Resumo:
The capacity of the surface glycoproteins of enveloped viruses to mediate virus/cell binding and membrane fusion requires a proper thiol/disulfide balance. Chemical manipulation of their redox state using reducing agents or free sulfhydryl reagents affects virus/cell interaction. Conversely, natural thiol/disulfide rearrangements often occur during the cell interaction to trigger fusogenicity, hence the virus entry. We examined the relationship between the redox state of the 20 cysteine residues of the SARS-CoV (severe acute respiratory syndrome coronavirus) Spike glycoprotein S1 subdomain and its functional properties. Mature S1 exhibited similar to 4 unpaired cysteines, and chemically reduced S1 displaying up to similar to 6 additional unpaired cysteines still bound ACE2 and enabled fusion. In addition, virus/cell membrane fusion occurred in the presence of sulfhydryl-blocking reagents and oxidoreductase inhibitors. Thus, in contrast to various viruses including HIV (human immunodeficiency virus) examined in parallel, the functions of the SARS-CoV Spike glycoprotein exhibit a significant and surprising independence of redox state, which may contribute to the wide host range of the virus. These data suggest clues for molecularly engineering vaccine immunogens.
Resumo:
A series of promoter probe vectors for use in Gram-negative bacteria has been made in two broad-host-range vectors, pOT (pBBR replicon) and pJP2 (incP replicon). Reporter fusions can be made to gfpUV, gfprnut3.1, unstable gfpmut3.1 variants (LAA, LVA, AAV and ASV), gfp+, dsRed2, dsRedT3, dsRedT4, mRFP1, gusA or lacZ. The two vector families, pOT and pJP2, are compatible with one another and share the same polylinker for facile interchange of promoter regions. Vectors based on pJP2 have the advantage of being ultra-stable in the environment due to the presence of the parABCDE genes. As a confirmation of their usefulness, the dicarboxylic acid transport system promoter (dctA(p)) was cloned into a pOT (pRU1097)- and a pJP2 (pRU1156)-based vector and shown to be expressed by Rhizobium leguminosarum in infection threads of vetch. This indicates the presence of dicarboxylates at the earliest stages of nodule formation.
Resumo:
Influenza viruses attach to host cells by binding to terminal sialic acid (Neu5Ac) on glycoproteins or glycolipids. Both the linkage of Neu5Ac and the identity of other carbohydrates within the oligosaccharide are thought to play roles in restricting the host range of the virus. In this study, the receptor specificity of an H5 avian influenza virus haemagglutinin protein that has recently infected man (influenza strain A/Vietnam/1194/04) has been probed using carbohydrate functionalised poly(acrylic acid) polymers. A baculovirus expression system that allows facile and safe analysis of the Neu5Ac binding specificity of mutants of H5 HA engineered at sites that are predicted to effect a switch in host range has also been developed. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Mobile genetic elements are widespread in Pseudomonas syringae, and often associate with virulence genes. Genome reannotation of the model bean pathogen P. syringae pv. phaseolicola 1448A identified seventeen types of insertion sequences and two miniature inverted-repeat transposable elements (MITEs) with a biased distribution, representing 2.8% of the chromosome, 25.8% of the 132-kb virulence plasmid and 2.7% of the 52-kb plasmid. Employing an entrapment vector containing sacB, we estimated that transposition frequency oscillated between 2.661025 and 1.161026, depending on the clone, although it was stable for each clone after consecutive transfers in culture media. Transposition frequency was similar for bacteria grown in rich or minimal media, and from cells recovered from compatible and incompatible plant hosts, indicating that growth conditions do not influence transposition in strain 1448A. Most of the entrapped insertions contained a full-length IS801 element, with the remaining insertions corresponding to sequences smaller than any transposable element identified in strain 1448A, and collectively identified as miniature sequences. From these, fragments of 229, 360 and 679-nt of the right end of IS801 ended in a consensus tetranucleotide and likely resulted from one-ended transposition of IS801. An average 0.7% of the insertions analyzed consisted of IS801 carrying a fragment of variable size from gene PSPPH_0008/PSPPH_0017, showing that IS801 can mobilize DNA in vivo. Retrospective analysis of complete plasmids and genomes of P. syringae suggests, however, that most fragments of IS801 are likely the result of reorganizations rather than one-ended transpositions, and that this element might preferentially contribute to genome flexibility by generating homologous regions of recombination. A further miniature sequence previously found to affect host range specificity and virulence, designated MITEPsy1 (100-nt), represented an average 2.4% of the total number of insertions entrapped in sacB, demonstrating for the first time the mobilization of a MITE in bacteria.
Resumo:
Cardiovascular disease (CVD) prevalence at a global level is predicted to increase substantially over the next decade due to the increasing ageing population and incidence of obesity. Hence, there is an urgent requirement to focus on modifiable contributors to CVD risk, including a high dietary intake of saturated fatty acids (SFA). As an important source of SFA in the UK diet, milk and dairy products are often targeted for SFA reduction. The current paper acknowledges that milk is a complex food and that simply focusing on the link between SFA and CVD risk overlooks the other beneficial nutrients of dairy foods. The body of existing prospective evidence exploring the impact of milk and dairy consumption on risk factors for CVD is reviewed. The current paper highlights that high milk consumption may be beneficial to cardiovascular health, while illustrating that the evidence is less clear for cheese and butter intake. The option of manipulating the fatty acid profile of ruminant milk is discussed as a potential dietary strategy for lowering SFA intake at a population level. The review highlights that there is a necessity to perform more well-controlled human intervention-based research that provides a more holistic evaluation of fat-reduced and fat-modified dairy consumption on CVD risk factors including vascular function, arterial stiffness, postprandial lipaemia and markers of inflammation. Additionally, further research is required to investigate the impact of different dairy products and the effect of the specific food matrix on CVD development.