14 resultados para Broglie, Albertine Ida Gustavine de Staël-Holstein, duchesse de, 1797-1838.
em CentAUR: Central Archive University of Reading - UK
Resumo:
Diet digestibility and rate of passage, eating and rumination behavior, dry matter intake (DMI), and lactation performance were compared in 6 Jersey and 6 Holstein multiparous cows. Cows were fed gestation diets according to body weight (BW) beginning 7 wk before expected calving and ad libitum amounts of a lactation diet postpartum. Diet digestibility and rate of passage were measured in 5-d periods at wk 5 prepartum and wk 6 and 14 of lactation. Eating and ruminating behavior was measured over 5-d periods at wk 5 and 2 prepartum and wk 2, 6, 10, and 14 of lactation. Milk yield and DMI were higher in Holsteins, but milk energy output per kilogram of metabolic BW (BW0.75) and intake capacity (DMI/kg of BW) did not differ between breeds. Holsteins spent longer ruminating per day compared with Jerseys, but daily eating time did not differ between breeds. Jerseys spent more time eating and ruminating per unit of ingested feed. The duration and number of meals consumed did not differ between breeds, but the meals consumed by Jerseys were distributed more evenly throughout each 24-h period, providing a more regular supply of feed to the rumen. Feed passed through the digestive tract more quickly in Jerseys compared with Holsteins, suggesting particle breakdown and rumen outflow were faster in Jerseys, but this may also reflect the relative size of their digestive tract. Neutral detergent fiber digestibility was greater in Jerseys, despite the shorter rumen retention time, but digestibility of dry matter, organic matter, starch, and N did not differ between breeds. Utilization of digested N for tissue retention was higher at wk 5 prepartum and lower at wk 14 of lactation in Jerseys. In contrast to numerous published studies, intake capacity of Jerseys was not higher than that of Holsteins, but in the present study, cows were selected on the basis of equal expected milk energy yield per kilogram of metabolic BW. Digestibility of neutral detergent fiber and rate of digesta passage were higher in Jerseys, probably as a consequence of increased mastication per unit of feed consumed in Jerseys and their smaller size.
Resumo:
The objectives were to compare the chemical composition, nutritive value, feed intake, milk production and composition, and presence in milk of transgenic DNA and the encoded protein Cry1Ab when corn silages containing 2 transgenes (2GM: herbicide tolerance: mepsps and insect resistance: cry1Ab) were fed as part of a standard total mixed ration (TMR) compared with a near isogenic corn silage ( C) to 8 multiparous lactating Holstein dairy cows in a single reversal design study. Cows were fed a TMR ration ad libitum and milked twice daily. Diets contained [ dry matter (DM) basis] 45% corn silage, 10% alfalfa hay, and 45% concentrate (1.66 Mcal of net energy for lactation/kg of DM, 15.8% crude protein, 35% neutral detergent fiber, and 4.1% fat). Each period was 28-d long. During the last 4 d of each period, feed intake and milk production data were recorded and milk samples taken for compositional analysis, including the presence of transgenic DNA and Cry1Ab protein. There was no significant difference in the chemical composition between C and 2GM silages, and both were within the expected range (37.6% DM, 1.51 Mcal of net energy for lactation/kg, 8.6% crude protein, 40% neutral detergent fiber, 19.6% acid detergent fiber, pH 3.76, and 62% in vitro DM digestibility). Cows fed the 2GM silage produced milk with slightly higher protein (3.09 vs. 3.00%), lactose ( 4.83 vs. 4.72%) and solids-not-fat (8.60 vs. 8.40%) compared with C. However, the yield (kg/d) of milk (36.5), 3.5% fat-corrected milk (34.4), fat (1.151), protein (1.106), lactose (1.738), and solids-not-fat ( 3.094), somatic cell count (log(10): 2.11), change in body weight (+ 7.8 kg), and condition score (+ 0.09) were not affected by type of silage, indicating no overall production difference. All milk samples were negative for the presence of transgenic DNA from either trait or the Cry1Ab protein. Results indicate that the 2GM silage modified with 2 transgenes did not affect nutrient composition of the silages and had no effect on animal performance and milk composition. No transgenic DNA and Cry1Ab protein were detected in milk.
Resumo:
To determine the effect of duration of dietary vitamin A restriction on site of fat deposition in growing cattle, 60 Holstein steers (BW = 218.4 ± 6.55 kg) were fed a diet based on high-moisture corn with 2,200 IU supplemental vitamin A/kg DM (C) or no supplemental vitamin A for a long (243 d; LR) or short (131 d; SR) restriction prior to harvest at 243 d. The SR steers were fed the C diet for the first 112 d. Steers were penned individually and fed for ad libitum intake. Jugular vein blood samples for serum retinol analysis were collected on d 1, 112, and 243. Carcass samples were collected for composition analysis. Subcutaneous fat samples were collected for fatty acid composition. Fat samples from the i.m. and s.c. depot were collected to measure adipocyte size and density. Feedlot performance (ADG, DMI, and G:F) was not affected (P > 0.05) by vitamin A restriction. On d 243, the i.m. fat content of the LM was 33% greater (P < 0.05) for LR than for SR and C steers (5.6 vs. 3.9 and 4.2% ether extract, respectively). Depth of back fat and KPH percentage were not affected (P = 0.44 and 0.80, respectively) by vitamin A restriction. Carcass weight, composition of edible carcass, and yield grade were similar among treatments (P > 0.10). Liver retinol (LR = 6.1, SR = 6.5, and C = 44.7 µg/g; P < 0.01) was reduced in LR and SR vs. C steers. On d 243, LR and SR steers had similar serum retinol concentrations, and these were lower (P < 0.01) than those of C steers (LR = 21.2, SR = 25.2, and C = 36.9 µg/dL). Intramuscular adipose cellularity (adipocyte/mm2 and mean adipocyte diameter) on d 112 and d 243 was not affected (P > 0.10) by vitamin A restriction. Restricting vitamin A intake for 243 d increased i.m fat percentage without affecting s.c. or visceral fat deposition, feedlot performance, or carcass weight. Restricting vitamin A intake for 131 d at the end of the finishing period appears to be insufficient to affect the site of fat deposition in Holstein steers.
Resumo:
Clinical and biomedical studies have provided evidence for the critical role of n-3 fatty acids on the reduction of chronic disease risk in humans, including cardiovascular disease. In the current experiment, the potential to enhance milk n-3 content in two breeds with inherent genetic differences in mammary lipogenesis and de novo fatty acid synthesis was examined using extruded linseeds. Six lactating cows (three Holstein and three Jersey) were used in a two-treatment switchback design with 3 × 21-day experimental periods to evaluate the effect of iso-energetic replacement of calcium salts of palm oil distillate (CPO) in the diet (34 g/kg dry matter (DM)) with 100 g/kg DM extruded linseeds (LIN). For both breeds, replacing CPO with LIN had no effect (P > 0.05) on DM intake or milk yield, but reduced (P < 0.05) milk fat and protein yield (on average, from 760 to 706 and 573 to 552 g/day, respectively). Relative to CPO, the LIN treatment reduced (P < 0.01) total saturated fatty acid content and enhanced (P < 0.001) 18:3n-3 in milk, whereas breed by diet interactions were significant for milk fat 16:0, total trans fatty acid and conjugated linoleic acid concentrations. Increases in 18:3n-3 intake derived from LIN in the diet were transferred into milk with a mean marginal transfer efficiency of 1.8%. Proportionate changes in milk fatty acid composition were greater in the Jersey, highlighting the importance of diet–genotype interactions on mammary lipogenesis. More extensive studies are required to determine the role of genotype on milk fat composition responses to oilseeds in the diet.
Resumo:
Sixteen multiparous Holstein cows were used to determine the effects of 2-hydroxy-4-(methylthio) butanoic acid isopropyl ester (HMBi: 0 vs. 1.26 g/kg of total ration dry matter (DM) and dietary crude protein (CP) concentration [14.7% (low) vs. 16.9% (standard), DM basis] on milk yield and composition using a replicated 4 x 4 Latin square design experiment with 4-wk periods. Cows were fed ad libitum a total mixed ration with a 1: 1 forage-to-concentrate ratio (DM basis), and diets provided an estimated 6.71 and 1.86% lysine and methionine, respectively, in metabolizable protein for the low-protein diet and 6.74 and 1.82% in the standard protein diet. Dry matter intake, milk yield, and composition were measured during wk 4 of each period. There were no effects on DM intake, which averaged 24.7 kg/d. There was an interaction between dietary CP and HMBi for milk yield and 3.5% fat-corrected milk (FCM). Feeding HMBi decreased milk and FCM yield when fed with the low-CP diet but did not affect milk or FCM yield when fed with the standard CP diet. Feeding HMBi increased milk protein concentration regardless of diet CP concentration and increased milk protein yield when added to the standard CP diet but not the low-CP diet. The positive effect of HMBi on milk protein yield was only observed at the standard level of dietary CP, suggesting other factors limited the response to HMBi when dietary protein supply was restricted.
Resumo:
Four multiparous cows with cannulas in the rumen and proximal duodenum were used in early lactation in a 4 x 4 Latin square experiment to investigate the effect of method of application of a fibrolytic enzyme product on digestive processes and milk production. The cows were given ad libitum a total mixed ration (TMR) composed of 57% (dry matter basis) forage (3:1 corn silage:grass silage) and 43% concentrates. The TMR contained (g/kg dry matter): 274 neutral detergent fiber, 295 starch, 180 crude protein. Treatments were TMR alone or TMR with the enzyme product added (2 kg/1000 kg TMR dry matter) either sprayed on the TMR 1 h before the morning feed (TMR-E), sprayed only on the concentrate the day before feeding (Concs-E), or infused into the rumen for 14 h/d (Rumen-E). There Was no significant effect on either feed intake or milk yield but both were highest on TMR-E. Rumen digestibility of dry matter, organic matter, and starch was unaffected by the enzyme. Digestibility of NDF was lowest on TMR-E in the rumen but highest postruminally. Total Tract digestibility was highest on TMR-E for dry matter, organic matter, and starch but treatment differences were nonsignificant for neutral detergent fiber: Corn silage stover retention time in the rumen was reduced by all enzyme treatments but postruminal transit time vas increased so the decline in total tract retention. time with enzymes was not significant. It is suggested that the tendency for enzymes to reduce particle retention time in the rumen may, by reducing the time available for fibrolysis to occur, at least partly explain the variability in the reported responses to enzyme treatment.
Resumo:
This study investigated possible relationships between measurements of the somatotrophic axis in pre-pubertal dairy calves and subsequent milk yields. Endogenous growth hormone (GH) release was measured through a fed and fasted period in fifty 6-month-old Holstein-Friesian heifers and they were then challenged with growth hormone-releasing factor (GRF) to assess their GH release pattern. Insulin-like growth factor-I (IGF-I), insulin and glucose concentrations were measured in relation to time of feeding. Cows were subsequently monitored through their first three lactations to record peak and 305-day milk yields. In the first lactation, milk energy output for the first 120 days of lactation was also calculated. The mean 305-day milk yield increased from 7417 +/- 191 kg in the first lactation (n = 37) to 8749 +/- 252 kg in the third (n = 25). There were no significant relationships between any measures of GH secretion and peak or 305-day yield in any lactation. A highly significant positive relationship was established between the GH peak measured 10 min post-GRF challenge and 120-day milk energy values in the first lactation. This relationship was, however, only present in the subpopulation of 12 cows culled after one or two lactations and was absent in the 25 animals remaining for the third lactation. There were no significant relationships between pre-pubertal IGF-I and fed or fasted insulin or glucose concentrations and any subsequent measurement of yield. The usefulness of GH secretagogue challenges in calves as a predictive test for future milk production is thus limited but may have some bearing on nutrient partitioning and longevity. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
This paper compares the volatile compound and fatty acid compositions of grilled beef from Aberdeen Angus and Holstein-Friesian steers slaughtered at 14 months, each breed fed from 6 months on either cereal-based concentrates or grass silage. Linoleic acid levels were higher in the muscle of concentrates-fed animals, which in the cooked meat resulted in increased levels of several compounds formed from linoleic acid decomposition. Levels of alpha-linolenic acid, and hence some volatile compounds derived from this fatty acid, were higher in the meat from the silage-fed steers. 1-Octen-3-ol, hexanal, 2-pentylfuran, trimethylamine, cis- and trans-2-octene and 4,5-dimethyl-2-pentyl-3-oxazoline were over 3 times higher in the steaks from the concentrates-fed steers, while grass-derived 1-phytene was present at much higher levels in the beef from the silage-fed steers. Only slight effects of breed were observed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this study was to investigate the effects of numerous milk compositional factors on milk coagulation properties using Partial Least Squares (PLS). Milk from herds of Jersey and Holstein- Friesian cattle was collected across the year and blended (n=55), to maximise variation in composition and coagulation. The milk was analysed for casein, protein, fat, titratable acidity, lactose, Ca2+, urea content, micelles size, fat globule size, somatic cell count and pH. Milk coagulation properties were defined as coagulation time, curd firmness and curd firmness rate measured by a controlled strain rheometer. The models derived from PLS had higher predictive power than previous models demonstrating the value of measuring more milk components. In addition to the well-established relationships with casein and protein levels, CMS and fat globule size were found to have as strong impact on all of the three models. The study also found a positive impact of fat on milk coagulation properties and a strong relationship between lactose and curd firmness, and urea and curd firmness rate, all of which warrant further investigation due to current lack of knowledge of the underlying mechanism. These findings demonstrate the importance of using a wider range of milk compositional variables for the prediction of the milk coagulation properties, and hence as indicators of milk suitability for cheese making.