5 resultados para Brassica Self-incompatibility
em CentAUR: Central Archive University of Reading - UK
A genetic linkage map of microsatellite, gene-specific and morphological markers in diploid Fragaria
Resumo:
Diploid Fragaria provide a potential model for genomic studies in the Rosaceae. To develop a genetic linkage map of diploid Fragaria, we scored 78 markers (68 microsatellites, one sequence-characterised amplified region, six gene-specific markers and three morphological traits) in an interspecific F2 population of 94 plants generated from a cross of F.vesca f. semperflorens × F. nubicola. Co-segregation analysis arranged 76 markers into seven discrete linkage groups covering 448 cM, with linkage group sizes ranging from 100.3 cM to 22.9 cM. Marker coverage was generally good; however some clustering of markers was observed on six of the seven linkage groups. Segregation distortion was observed at a high proportion of loci (54%), which could reflect the interspecific nature of the progeny and, in some cases, the self-incompatibility of F. nubicola. Such distortion may also account for some of the marker clustering observed in the map. One of the morphological markers, pale-green leaf (pg) has not previously been mapped in Fragaria and was located to the mid-point of linkage group VI. The transferable nature of the markers used in this study means that the map will be ideal for use as a framework for additional marker incorporation aimed at enhancing and resolving map coverage of the diploid Fragaria genome. The map also provides a sound basis for linkage map transfer to the cultivated octoploid strawberry.
Resumo:
An apple rootstock progeny raised from the cross between the very dwarfing ‘M.27’ and the more vigorous ‘M.116’ (‘M.M.106’ × ‘M.27’) was used for the construction of a linkage map comprising a total of 324 loci: 252 previously mapped SSRs, 71 newly characterised or previously unmapped SSR loci (including 36 amplified by 33 out of the 35 novel markers reported here), and the self-incompatibility locus. The map spanned the 17 linkage groups (LG) expected for apple covering a genetic distance of 1,229.5 cM, an estimated 91% of the Malus genome. Linkage groups were well populated and, although marker density ranged from 2.3 to 6.2 cM/SSR, just 15 gaps of more than 15 cM were observed. Moreover, only 17.5% of markers displayed segregation distortion and, unsurprisingly in a semi-compatible backcross, distortion was particularly pronounced surrounding the self-incompatibility locus (S) at the bottom of LG17. DNA sequences of 273 SSR markers and the S locus, representing a total of 314 loci in this investigation, were used to anchor to the ‘Golden Delicious’ genome sequence. More than 260 of these loci were located on the expected pseudo-chromosome on the ‘Golden Delicious’ genome or on its homeologous pseudo-chromosome. In total, 282.4 Mbp of sequence from 142 genome sequence scaffolds of the Malus genome were anchored to the ‘M.27’ × ‘M.116’ map, providing an interface between the marker data and the underlying genome sequence. This will be exploited for the identification of genes responsible for traits of agronomic importance such as dwarfing and water use efficiency.
Resumo:
Globally there have been a number of concerns about the development of genetically modified crops many of which relate to the implications of gene flow at various levels. In Europe these concerns have led the European Union (EU) to promote the concept of 'coexistence' to allow the freedom to plant conventional and genetically modified (GM) varieties but to minimise the presence of transgenic material within conventional crops. Should a premium for non-GM varieties emerge on the market, the presence of transgenes would generate a 'negative externality' to conventional growers. The establishment of maximum tolerance level for the adventitious presence of GM material in conventional crops produces a threshold effect in the external costs. The existing literature suggests that apart from the biological characteristics of the plant under consideration (e.g. self-pollination rates, entomophilous species, anemophilous species, etc.), gene flow at the landscape level is affected by the relative size of the source and sink populations and the spatial arrangement of the fields in the landscape. In this paper, we take genetically modified herbicide tolerant oilseed rape (GM HT OSR) as a model crop. Starting from an individual pollen dispersal function, we develop a spatially explicit numerical model in order to assess the effect of the size of the source/sink populations and the degree of spatial aggregation on the extent of gene flow into conventional OSR varieties under two alternative settings. We find that when the transgene presence in conventional produce is detected at the field level, the external cost will increase with the size of the source area and with the level of spatial disaggregation. on the other hand when the transgene presence is averaged among all conventional fields in the landscape (e.g. because of grain mixing before detection), the external cost will only depend on the relative size of the source area. The model could readily be incorporated into an economic evaluation of policies to regulate adoption of GM HT OSR. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Background and aims Unilateral incompatibility (UI) occurs when pollinations between species are successful in one direction but not in the other. Self-incompatible (SI) species frequently show UI with genetically related, self-compatible (SC) species, as pollen of SI species is compatible on the SC pistil, but not vice versa. Many examples of unilateral incompatibility, and all those which have been studied most intensively, are found in the Solanaceae, particularly Lycopersicon, Solanum, Nicotiana and Petunia. The genus Capsicum is evolutionarily somewhat distant from Lycopersicon and Solanum and even further removed from Nicotiana and Petunia. Unilateral incompatibility has also been reported in Capsicum; however, this is the first comprehensive study of crosses between all readily available species in the genus. Methods All readily available (wild and domesticated) species in the genus are used as plant material, including the three genera from the Capsicum pubescens complex plus eight other species. Pollinations were made on pot-grown plants in a glasshouse. The number of pistils pollinated per cross varied (from five to 40 pistils per plant), depending on the numbers of flowers available. Pistils were collected 24 h after pollination and fixed for 3-24 h. After staining, pistils were mounted in a drop of stain, squashed gently under a cover slip and examined microscopically under ultra-violet light for pollen tube growth. Key results Unilateral incompatibility is confirmed in the C. pubescens complex. Its direction conforms to that predominant in the Solanaceae and other families, i.e. pistils of self-incompatible species, or self-compatible taxa closely related to self-incompatible species, inhibit pollen tubes of self-compatible species. Conclusions Unilateral incompatibility in Capsicum does not seem to have arisen to prevent introgression of self-compatibility into self-incompatible taxa, but as a by-product of divergence of the C. pubescens complex from the remainder of the genus. (C) 2004 Annals of Botany Company.
Resumo:
Fitness of hybrids between genetically modified (GM) crops and wild relatives influences the likelihood of ecological harm. We measured fitness components in spontaneous (non-GM) rapeseed x Brassica rapa hybrids in natural populations. The F-1 hybrids yielded 46.9% seed output of B. rapa, were 16.9% as effective as males on B. rapa and exhibited increased self-pollination. Assuming 100% GM rapeseed cultivation, we conservatively predict < 7000 second-generation transgenic hybrids annually in the United Kingdom (i.e. similar to 20% of F-1 hybrids). Conversely, whilst reduced hybrid fitness improves feasibility of bio-containment, stage projection matrices suggests broad scope for some transgenes to offset this effect by enhancing fitness.