71 resultados para Branched-chain Amino Acid

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the largest contributions to biologically available nitrogen comes from the reduction of N-2 to ammonia by rhizobia in symbiosis with legumes. Plants supply dicarboxylic acids as a carbon source to bacteroids, and in return they receive ammonia. However, metabolic exchange must be more complex, because effective N-2 fixation by Rhizobium leguminosarum bv viciae bacteroids requires either one of two broad-specificity amino acid ABC transporters (Aap and Bra). It was proposed that amino acids cycle between plant and bacteroids, but the model was unconstrained because of the broad solute specificity of Aap and Bra. Here, we constrain the specificity of Bra and ectopically express heterologous transporters to demonstrate that branched-chain amino acid (LIV) transport is essential for effective N-2 fixation. This dependence of bacteroids on the plant for LIV is not due to their known down-regulation of glutamate synthesis, because ectopic expression of glutamate dehydrogenase did not rescue effective N-2 fixation. Instead, the effect is specific to LIV and is accompanied by a major reduction in transcription and activity of LIV biosynthetic enzymes. Bacteroids become symbiotic auxotrophs for LIV and depend on the plant for their supply. Bacteroids with aap bra null mutations are reduced in number, smaller, and have a lower DNA content than wild type. Plants control LIV supply to bacteroids, regulating their development and persistence. This makes it a critical control point for regulation of symbiosis. MICROBIOLOGY

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The increase in fractional rate of protein synthesis (K-s) in the skeletal muscle of growing rats during the transition from fasted to fed state has been explained by the synergistic action of a rise in plasma insulin and branched-chain amino acids (BCAA). Since growing lambs Also exhibit an increase in K-s with level of feed intake, the objective of the present study was to determine if this synergistic relationship between insulin and BCAA also occurs in ruminant animals. Six 30 kg fasted (72 h) lambs (8 months of age) received each of four treatments, which were based on continuous infusion into the jugular vein for 6 h of: (1) saline (155 mmol NaCl/l); (2) a mixture of BCAA (0.778 mumol leucine, 0.640 mumol isoleucine and 0.693 mumol valine/min.kg); (3) 18.7 mumol glucose/min.kg (to induce endogenous insulin secretion): (4) co-infusion of BCAA and glucose. Within each period all animals received the same isotope of phenylalanine, (Phe) as follows: (1) L-[1-C-13]Phe; (2) L-phenyl-[ring H-2(5)]-alanine; (3) L-[N-15]Phe; (4) L-[ring 2,6-H-3]Phe. Blood was sampled serially during infusions to measure plasma concentrations of insulin, glucose and amino acids, and plasma free Phe isotopic activity; biopsies were taken 6 h after the beginning of infusions to determine K-s in in. longissimus dorsi and vastus muscle. Compared with control (saline-infused) lambs, K-s was increased by an average of 40% at the end of glucose infusion, but this effect was not statistically significant in either of the muscles sampled. BCAA infusion, alone or in combination with glucose, also had no significant effect on K-s compared with control sheep. K-s was approximately 60% greater for vastus muscle than for m. longissimus dorsi (P<0.01), regardless of treatment. It is concluded that there are signals other than insulin and BCAA that are responsible for the feed-induced increase in K-s in muscle of growing ruminant animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the short-term (7 days) and long-term (60 days) metabolic effect of high fat diet induced obesity (DIO) and weight gain in isogenic C57BL/6 mice and examined the specific metabolic differentiation between mice that were either strong-responders (SR), or non-responders (NR) to weight gain. Mice (n = 80) were fed a standard chow diet for 7 days prior to randomization into a high-fat (HF) (n = 56) or a low-fat (LF) (n = 24) diet group. The (1)H NMR urinary metabolic profiles of LF and HF mice were recorded 7 and 60 days after the diet switch. On the basis of the body weight gain (BWG) distribution of HF group, we identified NR mice (n = 10) and SR mice (n = 14) to DIO. Compared with LF, HF feeding increased urinary excretion of glycine conjugates of β-oxidation intermediate (hexanoylglycine), branched chain amino acid (BCAA) catabolism intermediates (isovalerylglycine, α-keto-β-methylvalerate and α-ketoisovalerate) and end-products of nicotinamide adenine dinucleotide (NAD) metabolism (N1-methyl-2-pyridone-5-carboxamide, N1-methyl-4-pyridone-3-carboxamide) suggesting up-regulation of mitochondrial oxidative pathways. In the HF group, NR mice excreted relatively more hexanoylglycine, isovalerylglycine, and fewer tricarboxylic acid (TCA) cycle intermediate (succinate) in comparison to SR mice. Thus, subtle regulation of ketogenic pathways in DIO may alleviate the saturation of the TCA cycle and mitochondrial oxidative metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical approaches have been applied to examine amino acid pairing preferences within parallel beta-sheets. The main chain hydrogen bonding pattern in parallel beta-sheets means that, for each residue pair, only one of the residues is involved in main chain hydrogen bonding with the strand containing the partner residue. We call this the hydrogen bonded (HB) residue and the partner residue the non-hydrogen bonded (nHB) residue, and differentiate between the favorability of a pair and that of its reverse pair, e.g. Asn(HB)-Thr(nHB)versus Thr(HB)-Asn(nHB). Significantly (p < or = 0.000001) favoured pairings were rationalised using stereochemical arguments. For instance, Asn(HB)-Thr(nHB) and Arg(HB)-Thr(nHB) were favoured pairs, where the residues adopted favoured chi1 rotamer positions that allowed side-chain interactions to occur. In contrast, Thr(HB)-Asn(nHB) and Thr(HB)-Arg(nHB) were not significantly favoured, and could only form side-chain interactions if the residues involved adopted less favourable chi1 conformations. The favourability of hydrophobic pairs e.g. Ile(HB)-Ile(nHB), Val(HB)-Val(nHB) and Leu(HB)-Ile(nHB) was explained by the residues adopting their most preferred chi1 and chi2 conformations, which enabled them to form nested arrangements. Cysteine-cysteine pairs are significantly favoured, although these do not form intrasheet disulphide bridges. Interactions between positively and negatively charged residues were asymmetrically preferred: those with the negatively charged residue at the HB position were more favoured. This trend was accounted for by the presence of general electrostatic interactions, which, based on analysis of distances between charged atoms, were likely to be stronger when the negatively charged residue is the HB partner. The Arg(HB)-Asp(nHB) interaction was an exception to this trend and its favorability was rationalised by the formation of specific side-chain interactions. This research provides rules that could be applied to protein structure prediction, comparative modelling and protein engineering and design. The methods used to analyse the pairing preferences are automated and detailed results are available (http://www.rubic.rdg.ac.uk/betapairprefsparallel/).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical approaches have been applied to examine amino acid pairing preferences within parallel beta-sheets. The main chain hydrogen bonding pattern in parallel beta-sheets means that, for each residue pair, only one of the residues is involved in main chain hydrogen bonding with the strand containing the partner residue. We call this the hydrogen bonded (HB) residue and the partner residue the non-hydrogen bonded (nHB) residue, and differentiate between the favourability of a pair and that of its reverse pair, e.g. Asn(HB)-Thr(nHB) versus Thr(HB)-Asn(nHB). Significantly (p <= 0.000001) favoured pairings were rationalised using stereochemical arguments. For instance, Asn(HB)-Thr(nHB) and Arg(HB)-Thr(nHB) were favoured pairs, where the residues adopted favoured chi(1) rotamer positions that allowed side-chain interactions to occur. In contrast, Thr(HB)-Asn(nHB) and Thr(HB)-Arg(nHB) were not significantly favoured, and could only form side-chain interactions if the residues involved adopted less favourable chi(1) conformations. The favourability of hydrophobic pairs e.g. Ile(HB)-Ile(nHB), Val(HB)-Val(nHB) and Leu(HB)-Ile(nHB) was explained by the residues adopting their most preferred chi(1) and chi(2) conformations, which enabled them to form nested arrangements. Cysteine-cysteine pairs are significantly favoured, although these do not form intrasheet disulphide bridges. Interactions between positively and negatively charged residues were asymmetrically preferred: those with the negatively charged residue at the HB position were more favoured. This trend was accounted for by the presence of general electrostatic interactions, which, based on analysis of distances between charged atoms, were likely to be stronger when the negatively charged residue is the HB partner. The Arg(HB)-Asp(nHB) interaction was an exception to this trend and its favourability was rationalised by the formation of specific side-chain interactions. This research provides rules that could be applied to protein structure prediction, comparative modelling and protein engineering and design. The methods used to analyse the pairing preferences are automated and detailed results are available (http:// www.rubic.rdg.ac.uk/betapairprefsparallel/). (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the complex formation of a peptide betaAbetaAKLVFF, previously developed by our group, with Abeta(1–42) in aqueous solution. Circular dichroism spectroscopy is used to probe the interactions between betaAbetaAKLVFF and Abeta(1–42), and to study the secondary structure of the species in solution. Thioflavin T fluorescence spectroscopy shows that the population of fibers is higher in betaAbetaAKLVFF/Abeta(1–42) mixtures compared to pure Abeta(1–42) solutions. TEM and cryo-TEM demonstrate that co-incubation of betaAbetaAKLVFF with Abeta(1–42) causes the formation of extended dense networks of branched fibrils, very different from the straight fibrils observed for Abeta(1–42) alone. Neurotoxicity assays show that although betaAbetaAKLVFF alters the fibrillization of Abeta(1–42), it does not decrease the neurotoxicity, which suggests that toxic oligomeric Abeta(1–42) species are still present in the betaAbetaAKLVFF/Abeta(1–42) mixtures. Our results show that our designed peptide binds to Abeta(1–42) and changes the amyloid fibril morphology. This is shown to not necessarily translate into reduced toxicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The elucidation of the domain content of a given protein sequence in the absence of determined structure or significant sequence homology to known domains is an important problem in structural biology. Here we address how successfully the delineation of continuous domains can be accomplished in the absence of sequence homology using simple baseline methods, an existing prediction algorithm (Domain Guess by Size), and a newly developed method (DomSSEA). The study was undertaken with a view to measuring the usefulness of these prediction methods in terms of their application to fully automatic domain assignment. Thus, the sensitivity of each domain assignment method was measured by calculating the number of correctly assigned top scoring predictions. We have implemented a new continuous domain identification method using the alignment of predicted secondary structures of target sequences against observed secondary structures of chains with known domain boundaries as assigned by Class Architecture Topology Homology (CATH). Taking top predictions only, the success rate of the method in correctly assigning domain number to the representative chain set is 73.3%. The top prediction for domain number and location of domain boundaries was correct for 24% of the multidomain set (±20 residues). These results have been put into context in relation to the results obtained from the other prediction methods assessed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, differences at the genetic level of 37 Salmonella Enteritidis strains from five phage types (PTs) were compared using comparative genomic hybridization (CGH) to assess differences between PTs. There were approximately 400 genes that differentiated prevalent (4, 6, 8 and 13a) and sporadic (11) PTs, of which 35 were unique to prevalent PTs, including six plasmid-borne genes, pefA, B, C, D, srgC and rck, and four chromosomal genes encoding putative amino acid transporters. Phenotype array studies also demonstrated that strains from prevalent PTs were less susceptible to urea stress and utilized L-histidine, L-glutamine, L-proline, L-aspartic acid, gly-asn and gly-gln more efficiently than PT11 strains. Complementation of a PT11 strain with the transporter genes from PT4 resulted in a significant increase in utilization of the amino acids and reduced susceptibility to urea stress. In epithelial cell association assays, PT11 strains were less invasive than other prevalent PTs. Most strains from prevalent PTs were better biofilm formers at 37 degrees C than at 28 degrees C, whilst the converse was true for PT11 strains. Collectively, the results indicate that genetic and corresponding phenotypic differences exist between strains of the prevalent PTs 4, 6, 8 and 13a and non-prevalent PT11 strains that are likely to provide a selective advantage for strains from the former PTs and could help them to enter the food chain and cause salmonellosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The L-glutamate transporter GLT-1 is an abundant CNS membrane protein of the excitatory amino acid transporter (EAAT) family which controls extracellular L-glutamate levels and is important in limiting excitotoxic neuronal death. Using RT-PCR, we have determined that four mRNAs encoding GLT-1 exist in mouse brain, with the potential to encode four GLT-1 isoforms that differ in their N- and C-termini. We expressed all four isoforms (termed MAST-KREK, MPK-KREK, MAST-DIETCI and MPK-DIETCI according to amino acid sequence) in a range of cell lines and primary astrocytes and show that each isoform can reach the cell surface. In transfected HEK-293 or COS-7 cells, all four isoforms support high-affinity sodium-dependent L-glutamate uptake with identical pharmacological and kinetic properties. Inserting a viral epitope (V5, HA or FLAG) into the second extracellular domain of each isoform allowed co-immunoprecipitation and tr-FRET studies using transfected HEK-293 cells. Here we show for the first time that each of the four isoforms are able to combine to form homomeric and heteromeric assemblies, each of which are expressed at the cell surface of primary astrocytes. After activation of protein kinase C by phorbol ester, V5-tagged GLT-1 is rapidly removed from the cell surface of HEK-293 cells and degraded. This study provides direct biochemical evidence for oligomeric assembly of GLT-1 and reports the development of novel tools to provide insight into the trafficking of GLT-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

External reflectance Fourier transform infrared (ER-FTIR) spectroscopy and surface pressure measurements have been used to characterize the interaction of wild-type puroindoline-b (Pin-b) and two mutant forms featuring single residue substitutions-namely, Gly-46 to Ser-46 (Pin-bH) and Trp-44 to Arg-44 (Pin-bS)-with condensed-phase monolayers of zwitterionic (L-alpha-dipalmitoylphosphatidylcholine, DPPC) and anionic (L-alpha-dipalmitoylphosphatidyl-dl-glycerol, DPPG) phospholipids. The interaction with anionic DPPG monolayers, monitored by surface pressure isotherms, was influenced significantly by mutations in Pin-b (p < 0.05); wild-type Pin-b showed the highest surface pressure change of 10.6 +/- 1.0 mN m(-1), followed by Pin-bH (7.9 +/- 1.6 mN m(-1)) and Pin-bS (6.3 +/- 1.0 mN m(-1)), and the surface pressure isotherm kinetics were also different in each case. Integrated Amide I peak areas from corresponding ER-FTIR spectra confirmed the differences in adsorption kinetics, but also showed that differences in adsorbed amount were less significant, suggesting that mutations influence the degree of penetration into DPPG films. All Pin-b types showed evidence of interaction with DPPC films, detected as changes in surface pressure (5.6 +/- 1.1 mN m(-1)); however, no protein peaks were detected in the ER-FTIR spectra, which indicated that the interaction was via penetration with limited adsorption at the lipid/water interface. The expression of Pin-b mutants is linked to wheat endosperm hardness; therefore, the data presented here suggest that the lipid binding properties may be pivotal within the mechanism for this quality trait. In addition, the data suggest antimicrobial activities of Pin-b mutants would be lower than those of the wild-type Pin-b, because of decreased selectivity toward anionic phospholipids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A more complete understanding of amino acid ( AA) metabolism by the various tissues of the body is required to improve upon current systems for predicting the use of absorbed AA. The objective of this work was to construct and parameterize a model of net removal of AA by the portal-drained viscera (PDV). Six cows were prepared with arterial, portal, and hepatic catheters and infused abomasally with 0, 200, 400, or 600 g of casein daily. Casein infusion increased milk yield quadratically and tended to increase milk protein yield quadratically. Arterial concentrations of a number of essential AA increased linearly with respect to infusion amount. When infused casein was assumed to have a true digestion coefficient of 0.95, the minimum likely true digestion coefficient for noninfused duodenal protein was found to be 0.80. Net PDV use of AA appeared to be linearly related to total supply (arterial plus absorption), and extraction percentages ranged from 0.5 to 7.25% for essential AA. Prediction errors for portal vein AA concentrations ranged from 4 to 9% of the observed mean concentrations. Removal of AA by PDV represented approximately 33% of total postabsorptive catabolic use, including use during absorption but excluding use for milk protein synthesis, and was apparently adequate to support endogenous N losses in feces of 18.4 g/d. As 69% of this use was from arterial blood, increased PDV catabolism of AA in part represents increased absorption of AA in excess of amounts required by other body tissues. Based on the present model, increased anabolic use of AA in the mammary and other tissues would reduce the catabolic use of AA by the PDV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to construct a dynamic model of hepatic amino acid metabolism in the lactating dairy cow that could be parameterized using net flow data from in vivo experiments. The model considers 22 amino acids, ammonia, urea, and 13 energetic metabolites, and was parameterized using a steady-state balance model and two in vivo, net flow experiments conducted with mid-lactation dairy cows. Extracellular flows were derived directly from the observed data. An optimization routine was used to derive nine intracellular flows. The resulting dynamic model was found to be stable across a range of inputs suggesting that it can be perturbed and applied to other physiological states. Although nitrogen was generally in balance, leucine was in slight deficit compared to predicted needs for export protein synthesis, suggesting that an alternative source of leucine (e.g. peptides) was utilized. Simulations of varying glucagon concentrations indicated that an additional 5 mol/d of glucose could be synthesized at the reference substrate concentrations and blood flows. The increased glucose production was supported by increased removal from blood of lactate, glutamate, aspartate, alanine, asparagine, and glutamine. As glucose Output increased, ketone body and acetate release increased while CO2 release declined. The pattern of amino acids appearing in hepatic vein blood was affected by changes in amino acid concentration in portal vein blood, portal blood flow rate and glucagon concentration, with methionine and phenylalanine being the most affected of essential amino acids. Experimental evidence is insufficient to determine whether essential amino acids are affected by varying gluconeogenic demands. (C) 2004 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results from three types of study with broilers, namely nitrogen (N) balance, bioassays and growth experiments, provided the data used herein. Sets of data on N balance and protein accretion (bioassay studies) were used to assess the ability of the monomolecular equation to describe the relationship between (i) N balance and amino acid (AA) intake and (ii) protein accretion and AA intake. The model estimated the levels of isoleucine, lysine, valine, threonine, methionine, total sulphur AAs and tryptophan resulting in zero balance to be 58, 59, 80, 96, 23, 85 and 32 mg/kg live weight (LW)/day, respectively. These estimates show good agreement with those obtained in previous studies. For the growth experiments, four models, specifically re-parameterized for analysing energy balance data, were evaluated for their ability to determine crude protein (CP) intake at maintenance and efficiency of utilization of CP intake for producing gain. They were: a straight line, two equations representing diminishing returns behaviour (monomolecular and rectangular hyperbola) and one equation describing smooth sigmoidal behaviour with a fixed point of inflexion (Gompertz). The estimates of CP requirement for maintenance and efficiency of utilization of CP intake for producing gain varied from 5.4 to 5.9 g/kg LW/day and 0.60 to 0.76, respectively, depending on the models.