6 resultados para Brain Structures
em CentAUR: Central Archive University of Reading - UK
Resumo:
Numerous linguistic operations have been assigned to cortical brain areas, but the contributions of subcortical structures to human language processing are still being discussed. Using simultaneous EEG recordings directly from deep brain structures and the scalp, we show that the human thalamus systematically reacts to syntactic and semantic parameters of auditorily presented language in a temporally interleaved manner in coordination with cortical regions. In contrast, two key structures of the basal ganglia, the globus pallidus internus and the subthalamic nucleus, were not found to be engaged in these processes. We therefore propose that syntactic and semantic language analysis is primarily realized within cortico-thalamic networks, whereas a cohesive basal ganglia network is not involved in these essential operations of language analysis.
Resumo:
Models of functional connectivity in cortical cultures on multi-electrodes arrays may aid in understanding how cognitive pathways form and improve techniques that aim to interface with neuronal systems. To enable research on such models, this study uses both data- and model-driven approaches to determine what dependencies are present in and between functional connectivity networks derived from bursts of extracellularly recorded activity. Properties of excitation in bursts were analysed using correlative techniques to assess the degree of linear dependence and then two parallel techniques were used to assess functional connectivity. Three models presenting increasing levels of spatio-temporal dependency were used to capture the dynamics of individual functional connections and their consistencies were verified using surrogate data. By comparing network-wide properties between model generated networks and functional networks from data, complex interdependencies were revealed. This indicates the persistent co-activation of neuronal pathways in spontaneous bursts, as can be found in whole brain structures.
Resumo:
One of the most pervasive assumptions about human brain evolution is that it involved relative enlargement of the frontal lobes. We show that this assumption is without foundation. Analysis of five independent data sets using correctly scaled measures and phylogenetic methods reveals that the size of human frontal lobes, and of specific frontal regions, is as expected relative to the size of other brain structures. Recent claims for relative enlargement of human frontal white matter volume, and for relative enlargement shared by all great apes, seem to be mistaken. Furthermore, using a recently developed method for detecting shifts in evolutionary rates, we find that the rate of change in relative frontal cortex volume along the phylogenetic branch leading to humans was unremarkable and that other branches showed significantly faster rates of change. Although absolute and proportional frontal region size increased rapidly in humans, this change was tightly correlated with corresponding size increases in other areas andwhole brain size, and with decreases in frontal neuron densities. The search for the neural basis of human cognitive uniqueness should therefore focus less on the frontal lobes in isolation and more on distributed neural networks.
Resumo:
Anhedonia, the loss of pleasure or interest in previously rewarding stimuli, is a core feature of major depression. While theorists have argued that anhedonia reflects a reduced capacity to experience pleasure, evidence is mixed as to whether anhedonia is caused by a reduction in hedonic capacity. An alternative explanation is that anhedonia is due to the inability to sustain positive affect across time. Using positive images, we used an emotion regulation task to test whether individuals with depression are unable to sustain activation in neural circuits underlying positive affect and reward. While up-regulating positive affect, depressed individuals failed to sustain nucleus accumbens activity over time compared with controls. This decreased capacity was related to individual differences in self-reported positive affect. Connectivity analyses further implicated the fronto-striatal network in anhedonia. These findings support the hypothesis that anhedonia in depressed patients reflects the inability to sustain engagement of structures involved in positive affect and reward.
Resumo:
BACKGROUND: Resting-state functional magnetic resonance imaging (fMRI) enables investigation of the intrinsic functional organization of the brain. Fractal parameters such as the Hurst exponent, H, describe the complexity of endogenous low-frequency fMRI time series on a continuum from random (H = .5) to ordered (H = 1). Shifts in fractal scaling of physiological time series have been associated with neurological and cardiac conditions. METHODS: Resting-state fMRI time series were recorded in 30 male adults with an autism spectrum condition (ASC) and 33 age- and IQ-matched male volunteers. The Hurst exponent was estimated in the wavelet domain and between-group differences were investigated at global and voxel level and in regions known to be involved in autism. RESULTS: Complex fractal scaling of fMRI time series was found in both groups but globally there was a significant shift to randomness in the ASC (mean H = .758, SD = .045) compared with neurotypical volunteers (mean H = .788, SD = .047). Between-group differences in H, which was always reduced in the ASC group, were seen in most regions previously reported to be involved in autism, including cortical midline structures, medial temporal structures, lateral temporal and parietal structures, insula, amygdala, basal ganglia, thalamus, and inferior frontal gyrus. Severity of autistic symptoms was negatively correlated with H in retrosplenial and right anterior insular cortex. CONCLUSIONS: Autism is associated with a small but significant shift to randomness of endogenous brain oscillations. Complexity measures may provide physiological indicators for autism as they have done for other medical conditions.
Resumo:
The intelligent controlling mechanism of a typical mobile robot is usually a computer system. Some recent research is ongoing in which biological neurons are being cultured and trained to act as the brain of an interactive real world robot�thereby either completely replacing, or operating in a cooperative fashion with, a computer system. Studying such hybrid systems can provide distinct insights into the operation of biological neural structures, and therefore, such research has immediate medical implications as well as enormous potential in robotics. The main aim of the research is to assess the computational and learning capacity of dissociated cultured neuronal networks. A hybrid system incorporating closed-loop control of a mobile robot by a dissociated culture of neurons has been created. The system is flexible and allows for closed-loop operation, either with hardware robot or its software simulation. The paper provides an overview of the problem area, gives an idea of the breadth of present ongoing research, establises a new system architecture and, as an example, reports on the results of conducted experiments with real-life robots.