133 resultados para Boussinesq equations
em CentAUR: Central Archive University of Reading - UK
Resumo:
Wave-activity conservation laws are key to understanding wave propagation in inhomogeneous environments. Their most general formulation follows from the Hamiltonian structure of geophysical fluid dynamics. For large-scale atmospheric dynamics, the Eliassen–Palm wave activity is a well-known example and is central to theoretical analysis. On the mesoscale, while such conservation laws have been worked out in two dimensions, their application to a horizontally homogeneous background flow in three dimensions fails because of a degeneracy created by the absence of a background potential vorticity gradient. Earlier three-dimensional results based on linear WKB theory considered only Doppler-shifted gravity waves, not waves in a stratified shear flow. Consideration of a background flow depending only on altitude is motivated by the parameterization of subgrid-scales in climate models where there is an imposed separation of horizontal length and time scales, but vertical coupling within each column. Here we show how this degeneracy can be overcome and wave-activity conservation laws derived for three-dimensional disturbances to a horizontally homogeneous background flow. Explicit expressions for pseudoenergy and pseudomomentum in the anelastic and Boussinesq models are derived, and it is shown how the previously derived relations for the two-dimensional problem can be treated as a limiting case of the three-dimensional problem. The results also generalize earlier three-dimensional results in that there is no slowly varying WKB-type requirement on the background flow, and the results are extendable to finite amplitude. The relationship A E =cA P between pseudoenergy A E and pseudomomentum A P, where c is the horizontal phase speed in the direction of symmetry associated with A P, has important applications to gravity-wave parameterization and provides a generalized statement of the first Eliassen–Palm theorem.
Resumo:
Exact, finite-amplitude, local wave-activity conservation laws are derived for disturbances to steady flows in the context of the two-dimensional anelastic equations. The conservation laws are expressed entirely in terms of Eulerian quantities, and have the property that, in the limit of a small-amplitude, slowly varying, monochromatic wave train, the wave-activity density A and flux F, when averaged over phase, satisfy F = cgA where cg is the group velocity of the waves. For nonparallel steady flows, the only conserved wave activity is a form of disturbance pseudoenergy; when the steady flow is parallel, there is in addition a conservation law for the disturbance pseudomomentum. The above results are obtained not only for isentropic background states (which give the so-called “deep form” of the anelastic equations), but also for arbitrary background potential-temperature profiles θ0(z) so long as the variation in θ0(z) over the depth of the fluid is small compared with θ0 itself. The Hamiltonian structure of the equations is established in both cases, and its symmetry properties discussed. An expression for available potential energy is also derived that, for the case of a stably stratified background state (i.e., dθ0/dz > 0), is locally positive definite; the expression is valid for fully three-dimensional flow. The counterparts to results for the two-dimensional Boussinesq equations are also noted.
Resumo:
Many operational weather forecasting centres use semi-implicit time-stepping schemes because of their good efficiency. However, as computers become ever more parallel, horizontally explicit solutions of the equations of atmospheric motion might become an attractive alternative due to the additional inter-processor communication of implicit methods. Implicit and explicit (IMEX) time-stepping schemes have long been combined in models of the atmosphere using semi-implicit, split-explicit or HEVI splitting. However, most studies of the accuracy and stability of IMEX schemes have been limited to the parabolic case of advection–diffusion equations. We demonstrate how a number of Runge–Kutta IMEX schemes can be used to solve hyperbolic wave equations either semi-implicitly or HEVI. A new form of HEVI splitting is proposed, UfPreb, which dramatically improves accuracy and stability of simulations of gravity waves in stratified flow. As a consequence it is found that there are HEVI schemes that do not lose accuracy in comparison to semi-implicit ones. The stability limits of a number of variations of trapezoidal implicit and some Runge–Kutta IMEX schemes are found and the schemes are tested on two vertical slice cases using the compressible Boussinesq equations split into various combinations of implicit and explicit terms. Some of the Runge–Kutta schemes are found to be beneficial over trapezoidal, especially since they damp high frequencies without dropping to first-order accuracy. We test schemes that are not formally accurate for stiff systems but in stiff limits (nearly incompressible) and find that they can perform well. The scheme ARK2(2,3,2) performs the best in the tests.
Resumo:
A theory of available energy for axisymmetric circulations is presented. The theory is a generalization of the classical theory of available potential energy, in that it accounts for both thermal and angular momentum constraints on the circulation. The generalization relies on the Hamiltonian structure of the (conservative) dynamics, is exact at finite amplitude, and has a local form. Application of the theory is presented for the case of an axisymmetric vortex on an f -plane in the context of the Boussinesq equations.
Resumo:
Many physical systems exhibit dynamics with vastly different time scales. Often the different motions interact only weakly and the slow dynamics is naturally constrained to a subspace of phase space, in the vicinity of a slow manifold. In geophysical fluid dynamics this reduction in phase space is called balance. Classically, balance is understood by way of the Rossby number R or the Froude number F; either R ≪ 1 or F ≪ 1. We examined the shallow-water equations and Boussinesq equations on an f -plane and determined a dimensionless parameter _, small values of which imply a time-scale separation. In terms of R and F, ∈= RF/√(R^2+R^2 ) We then developed a unified theory of (extratropical) balance based on _ that includes all cases of small R and/or small F. The leading-order systems are ensured to be Hamiltonian and turn out to be governed by the quasi-geostrophic potential-vorticity equation. However, the height field is not necessarily in geostrophic balance, so the leading-order dynamics are more general than in quasi-geostrophy. Thus the quasi-geostrophic potential-vorticity equation (as distinct from the quasi-geostrophic dynamics) is valid more generally than its traditional derivation would suggest. In the case of the Boussinesq equations, we have found that balanced dynamics generally implies hydrostatic balance without any assumption on the aspect ratio; only when the Froude number is not small and it is the Rossby number that guarantees a timescale separation must we impose the requirement of a small aspect ratio to ensure hydrostatic balance.
Resumo:
A theory of available potential energy (APE) for symmetric circulations, which includes momentum constraints, is presented. The theory is a generalization of the classical theory of APE, which includes only thermal constraints on the circulation. Physically, centrifugal potential energy is included along with gravitational potential energy. The generalization relies on the Hamiltonian structure of the conservative dynamics, although (as with classical APE) it still defines the energetics in a nonconservative framework. It follows that the theory is exact at finite amplitude, has a local form, and can be applied to a variety of fluid models. It is applied here to the f -plane Boussinesq equations. It is shown that, by including momentum constraints, the APE of a symmetrically stable flow is zero, while the energetics of a mechanically driven symmetric circulation properly reflect its causality.
Resumo:
A nonlinear symmetric stability theorem is derived in the context of the f-plane Boussinesq equations, recovering an earlier result of Xu within a more general framework. The theorem applies to symmetric disturbances to a baroclinic basic flow, the disturbances having arbitrary structure and magnitude. The criteria for nonlinear stability are virtually identical to those for linear stability. As in Xu, the nonlinear stability theorem can be used to obtain rigorous upper bounds on the saturation amplitude of symmetric instabilities. In a simple example, the bounds are found to compare favorably with heuristic parcel-based estimates in both the hydrostatic and non-hydrostatic limits.
Resumo:
In this paper, the available potential energy (APE) framework of Winters et al. (J. Fluid Mech., vol. 289, 1995, p. 115) is extended to the fully compressible Navier– Stokes equations, with the aims of clarifying (i) the nature of the energy conversions taking place in turbulent thermally stratified fluids; and (ii) the role of surface buoyancy fluxes in the Munk & Wunsch (Deep-Sea Res., vol. 45, 1998, p. 1977) constraint on the mechanical energy sources of stirring required to maintain diapycnal mixing in the oceans. The new framework reveals that the observed turbulent rate of increase in the background gravitational potential energy GPEr , commonly thought to occur at the expense of the diffusively dissipated APE, actually occurs at the expense of internal energy, as in the laminar case. The APE dissipated by molecular diffusion, on the other hand, is found to be converted into internal energy (IE), similar to the viscously dissipated kinetic energy KE. Turbulent stirring, therefore, does not introduce a new APE/GPEr mechanical-to-mechanical energy conversion, but simply enhances the existing IE/GPEr conversion rate, in addition to enhancing the viscous dissipation and the entropy production rates. This, in turn, implies that molecular diffusion contributes to the dissipation of the available mechanical energy ME =APE +KE, along with viscous dissipation. This result has important implications for the interpretation of the concepts of mixing efficiency γmixing and flux Richardson number Rf , for which new physically based definitions are proposed and contrasted with previous definitions. The new framework allows for a more rigorous and general re-derivation from the first principles of Munk & Wunsch (1998, hereafter MW98)’s constraint, also valid for a non-Boussinesq ocean: G(KE) ≈ 1 − ξ Rf ξ Rf Wr, forcing = 1 + (1 − ξ )γmixing ξ γmixing Wr, forcing , where G(KE) is the work rate done by the mechanical forcing, Wr, forcing is the rate of loss of GPEr due to high-latitude cooling and ξ is a nonlinearity parameter such that ξ =1 for a linear equation of state (as considered by MW98), but ξ <1 otherwise. The most important result is that G(APE), the work rate done by the surface buoyancy fluxes, must be numerically as large as Wr, forcing and, therefore, as important as the mechanical forcing in stirring and driving the oceans. As a consequence, the overall mixing efficiency of the oceans is likely to be larger than the value γmixing =0.2 presently used, thereby possibly eliminating the apparent shortfall in mechanical stirring energy that results from using γmixing =0.2 in the above formula.
Resumo:
This paper seeks to illustrate the point that physical inconsistencies between thermodynamics and dynamics usually introduce nonconservative production/destruction terms in the local total energy balance equation in numerical ocean general circulation models (OGCMs). Such terms potentially give rise to undesirable forces and/or diabatic terms in the momentum and thermodynamic equations, respectively, which could explain some of the observed errors in simulated ocean currents and water masses. In this paper, a theoretical framework is developed to provide a practical method to determine such nonconservative terms, which is illustrated in the context of a relatively simple form of the hydrostatic Boussinesq primitive equation used in early versions of OGCMs, for which at least four main potential sources of energy nonconservation are identified; they arise from: (1) the “hanging” kinetic energy dissipation term; (2) assuming potential or conservative temperature to be a conservative quantity; (3) the interaction of the Boussinesq approximation with the parameterizations of turbulent mixing of temperature and salinity; (4) some adiabatic compressibility effects due to the Boussinesq approximation. In practice, OGCMs also possess spurious numerical energy sources and sinks, but they are not explicitly addressed here. Apart from (1), the identified nonconservative energy sources/sinks are not sign definite, allowing for possible widespread cancellation when integrated globally. Locally, however, these terms may be of the same order of magnitude as actual energy conversion terms thought to occur in the oceans. Although the actual impact of these nonconservative energy terms on the overall accuracy and physical realism of the oceans is difficult to ascertain, an important issue is whether they could impact on transient simulations, and on the transition toward different circulation regimes associated with a significant reorganization of the different energy reservoirs. Some possible solutions for improvement are examined. It is thus found that the term (2) can be substantially reduced by at least one order of magnitude by using conservative temperature instead of potential temperature. Using the anelastic approximation, however, which was initially thought as a possible way to greatly improve the accuracy of the energy budget, would only marginally reduce the term (4) with no impact on the terms (1), (2) and (3).
Resumo:
In this paper, the concept of available potential energy (APE) density is extended to a multicomponent Boussinesq fluid with a nonlinear equation of state. As shown by previous studies, the APE density is naturally interpreted as the work against buoyancy forces that a parcel needs to perform to move from a notional reference position at which its buoyancy vanishes to its actual position; because buoyancy can be defined relative to an arbitrary reference state, so can APE density. The concept of APE density is therefore best viewed as defining a class of locally defined energy quantities, each tied to a different reference state, rather than as a single energy variable. An important result, for which a new proof is given, is that the volume integrated APE density always exceeds Lorenz’s globally defined APE, except when the reference state coincides with Lorenz’s adiabatically re-arranged reference state of minimum potential energy. A parcel reference position is systematically defined as a level of neutral buoyancy (LNB): depending on the nature of the fluid and on how the reference state is defined, a parcel may have one, none, or multiple LNB within the fluid. Multiple LNB are only possible for a multicomponent fluid whose density depends on pressure. When no LNB exists within the fluid, a parcel reference position is assigned at the minimum or maximum geopotential height. The class of APE densities thus defined admits local and global balance equations, which all exhibit a conversion with kinetic energy, a production term by boundary buoyancy fluxes, and a dissipation term by internal diffusive effects. Different reference states alter the partition between APE production and dissipation, but neither affect the net conversion between kinetic energy and APE, nor the difference between APE production and dissipation. We argue that the possibility of constructing APE-like budgets based on reference states other than Lorenz’s reference state is more important than has been previously assumed, and we illustrate the feasibility of doing so in the context of an idealised and realistic oceanic example, using as reference states one with constant density and another one defined as the horizontal mean density field; in the latter case, the resulting APE density is found to be a reasonable approximation of the APE density constructed from Lorenz’s reference state, while being computationally cheaper.
Resumo:
In this paper a cell by cell anisotropic adaptive mesh technique is added to an existing staggered mesh Lagrange plus remap finite element ALE code for the solution of the Euler equations. The quadrilateral finite elements may be subdivided isotropically or anisotropically and a hierarchical data structure is employed. An efficient computational method is proposed, which only solves on the finest level of resolution that exists for each part of the domain with disjoint or hanging nodes being used at resolution transitions. The Lagrangian, equipotential mesh relaxation and advection (solution remapping) steps are generalised so that they may be applied on the dynamic mesh. It is shown that for a radial Sod problem and a two-dimensional Riemann problem the anisotropic adaptive mesh method runs over eight times faster.
Resumo:
Simulations of the global atmosphere for weather and climate forecasting require fast and accurate solutions and so operational models use high-order finite differences on regular structured grids. This precludes the use of local refinement; techniques allowing local refinement are either expensive (eg. high-order finite element techniques) or have reduced accuracy at changes in resolution (eg. unstructured finite-volume with linear differencing). We present solutions of the shallow-water equations for westerly flow over a mid-latitude mountain from a finite-volume model written using OpenFOAM. A second/third-order accurate differencing scheme is applied on arbitrarily unstructured meshes made up of various shapes and refinement patterns. The results are as accurate as equivalent resolution spectral methods. Using lower order differencing reduces accuracy at a refinement pattern which allows errors from refinement of the mountain to accumulate and reduces the global accuracy over a 15 day simulation. We have therefore introduced a scheme which fits a 2D cubic polynomial approximately on a stencil around each cell. Using this scheme means that refinement of the mountain improves the accuracy after a 15 day simulation. This is a more severe test of local mesh refinement for global simulations than has been presented but a realistic test if these techniques are to be used operationally. These efficient, high-order schemes may make it possible for local mesh refinement to be used by weather and climate forecast models.
Resumo:
A numerical algorithm for the biharmonic equation in domains with piecewise smooth boundaries is presented. It is intended for problems describing the Stokes flow in the situations where one has corners or cusps formed by parts of the domain boundary and, due to the nature of the boundary conditions on these parts of the boundary, these regions have a global effect on the shape of the whole domain and hence have to be resolved with sufficient accuracy. The algorithm combines the boundary integral equation method for the main part of the flow domain and the finite-element method which is used to resolve the corner/cusp regions. Two parts of the solution are matched along a numerical ‘internal interface’ or, as a variant, two interfaces, and they are determined simultaneously by inverting a combined matrix in the course of iterations. The algorithm is illustrated by considering the flow configuration of ‘curtain coating’, a flow where a sheet of liquid impinges onto a moving solid substrate, which is particularly sensitive to what happens in the corner region formed, physically, by the free surface and the solid boundary. The ‘moving contact line problem’ is addressed in the framework of an earlier developed interface formation model which treats the dynamic contact angle as part of the solution, as opposed to it being a prescribed function of the contact line speed, as in the so-called ‘slip models’. Keywords: Dynamic contact angle; finite elements; free surface flows; hybrid numerical technique; Stokes equations.